Your browser doesn't support javascript.
loading
DNA-stable isotope probing and metagenomics reveal Fe(II) oxidation by core microflora in microoxic rhizospheric habitats to mitigate the accumulation of cadmium and phenanthrene in rice.
Wu, Chen; Hang, Sicheng; Li, Feng; Wu, Yujun; Yi, Shengwei; Liu, Xingang; Chen, Mingjie; Ge, Fei; Tian, Jiang; Zhang, Ming; Zhang, Dayi.
Afiliação
  • Wu C; College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan, 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Prin
  • Hang S; College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan, 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Prin
  • Li F; College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan, 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Prin
  • Wu Y; College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan, 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Prin
  • Yi S; College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan, 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Prin
  • Liu X; College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan, 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Prin
  • Chen M; College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan, 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Prin
  • Ge F; College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan, 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Prin
  • Tian J; College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan, 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Prin
  • Zhang M; Department of Environmental Engineering, China Jiliang University, Hangzhou, 310018, China.
  • Zhang D; College of New Energy and Environment, Jilin University, Changchun, 130021, China.
Environ Pollut ; 362: 125012, 2024 Sep 21.
Article em En | MEDLINE | ID: mdl-39313124
ABSTRACT
Rice rhizosphere soil-porewater microdomains exist within an iron (Fe)-rich microoxic habitat during paddy soil flooding. However, the response mechanisms of core microflora in this habitat to Fe(II)-oxidation-mediated cadmium (Cd) and phenanthrene (Phen) remain unclear. Using gel-stabilized gradient systems to replicate the microoxic conditions in the rice rhizosphere porewater, we found that microaerophilic rhizobacteria drove Fe(II) oxidation to yield iron oxides, thereby reducing the Cd and Phen contents in the rhizosphere porewater and rice (Cd and Phen decreased by 15.9%-78.0% and 10.1%-37.4%, respectively). However, co-exposure to Cd and Phen resulted in a greater reduction in the Cd uptake and a greater increase in the Phen uptake in rice as compared to those in the Cd or Phen treatments, possibly attributing to the cation-π interactions between Cd and Phen, as well as competition between the adsorption sites on the roots. The elevation of Cd-tolerant genes and Phen-degradation genes in biogenic cell-mineral aggregates unveiled the survival strategies of rhizobacteria with respect to Cd and Phen in the microoxic habitat. Potential Cd-tolerant rhizobacteria (e.g., Pandoraea and Comamonas) and Phen-degradation rhizobacteria (e.g., Pseudoxanthobacter) were identified through the DNA-SIP and 16S rRNA gene amplicon sequencing. Metagenomic analysis further confirmed that these core microbes harbor Cd-tolerant, Phen-degradation, and Fe(II) oxidation genes, supporting their metabolic potential for Cd and/or Phen in the microoxic habitat of the rice rhizosphere. These findings suggest the potential mechanism and ecological significance of core rhizospheric microbial-driven Fe(II) oxidation in mitigating the bioavailability of Cd and Phen in paddy soil during flooding.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Environ Pollut Assunto da revista: SAUDE AMBIENTAL Ano de publicação: 2024 Tipo de documento: Article País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Environ Pollut Assunto da revista: SAUDE AMBIENTAL Ano de publicação: 2024 Tipo de documento: Article País de publicação: Reino Unido