Your browser doesn't support javascript.
loading
Interfacial Dipole Engineering for Energy Level Alignment in NiOx-Based Quantum Dot Light-Emitting Diodes.
Xu, Shuai-Hao; Xu, Jin-Zhe; Tang, Ying-Bo; Liu, Wei-Zhi; Meng, Shu-Guang; Zhou, Dong-Ying; Liao, Liang-Sheng.
Afiliação
  • Xu SH; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China.
  • Xu JZ; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China.
  • Tang YB; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China.
  • Liu WZ; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China.
  • Meng SG; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China.
  • Zhou DY; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China.
  • Liao LS; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China.
Small ; : e2403325, 2024 Sep 23.
Article em En | MEDLINE | ID: mdl-39314054
ABSTRACT
The solution-derived non-stoichiometric nickel oxide (NiOx) is a promising hole-injecting material for stable quantum dot light-emitting diodes (QLEDs). However, the carrier imbalance due to the misalignment of energy levels between the NiOx and polymeric hole-transporting layers (HTLs) curtails the device efficiency. In this study, the modification of the NiOx surface is investigated using either 3-cyanobenzoic acid (3-CN-BA) or 4-cyanobenzoic acid (4-CN-BA) in the QLED fabrication. Morphological and electrical analyses revealed that both 4-CN-BA and 3-CN-BA can enhance the work function of NiOx, reduce the oxygen vacancies on the NiOx surface, and facilitate a uniform morphology for subsequent HTL layers. Moreover, it is found that the binding configurations of dipole molecules as a function of the substitution position of the tail group significantly impact the work function of underlying layers. When integrated in QLEDs, the modification layers resulted in a significant improvement in the electroluminescent efficiency due to the enhancement of energy level alignment and charge balance within the devices. Specifically, QLEDs incorporating 4-CN-BA achieved a champion external quantum efficiency (EQE) of 20.34%, which is a 1.8X improvement in comparison with that of the devices utilizing unmodified NiOx (7.28%). Moreover, QLEDs with 4-CN-BA and 3-CN-BA modifications exhibited prolonged operational lifetimes, indicating potential for practical applications.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Small / Small (Weinh., Internet) / Small (Weinheim. Internet) Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China País de publicação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Small / Small (Weinh., Internet) / Small (Weinheim. Internet) Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China País de publicação: Alemanha