Your browser doesn't support javascript.
loading
The ubiquitin E3 ligase RZFP1 affects drought tolerance in poplar by mediating the degradation of the protein phosphatase PP2C-9.
He, Fang; Niu, Meng-Xue; Wang, Ting; Li, Jun-Lin; Shi, Yu-Jie; Zhao, Jiu-Jiu; Li, Hao; Xiang, Xiang; Yang, Peng; Wei, Shu-Ying; Lin, Tian-Tian; Huang, Xiong; Xia, Xinli; Wan, Xue-Qin.
Afiliação
  • He F; National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sich
  • Niu MX; College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
  • Wang T; National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sich
  • Li JL; National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sich
  • Shi YJ; National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sich
  • Zhao JJ; National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sich
  • Li H; National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sich
  • Xiang X; National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sich
  • Yang P; National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sich
  • Wei SY; National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sich
  • Lin TT; National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sich
  • Huang X; National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sich
  • Xia X; College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
  • Wan XQ; National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sich
Plant Physiol ; 2024 Sep 24.
Article em En | MEDLINE | ID: mdl-39315969
ABSTRACT
Abscisic acid signaling has been implicated in plant responses to water deficit-induced osmotic stress. However, the underlying molecular mechanism remains unelucidated. This study identified the RING-type E3 ubiquitin ligase RING ZINC FINGER PROTEIN1 (PtrRZFP1) in poplar (Populus trichocarpa), a woody model plant. PtrRZFP1 encodes a ubiquitin E3 ligase that participates in protein ubiquitination. PtrRZFP1 mainly functions in the nucleus and endoplasmic reticulum and is activated by drought and abscisic acid. PtrRZFP1-overexpressing transgenic poplars (35SPtrRZFP1) showed greater tolerance to drought, whereas PtrRZFP1-knockdown lines (KD-PtrRZFP1) showed greater sensitivity to drought. Under treatment with polyethylene glycol and abscisic acid, PtrRZFP1 promoted the production of NO and H2O2 in stomatal guard cells, ultimately enhancing stomatal closure and improving drought tolerance. Additionally, PtrRZFP1 physically interacted with the clade A Protein Phosphatase 2C protein PtrPP2C-9, a core regulator of abscisic acid signaling, and mediated its ubiquitination and eventual degradation through the ubiquitination-26S proteasome system, indicating that PtrRZFP1 positively regulates the abscisic acid signaling pathway. Furthermore, the PtrPP2C-9-overexpression line was insensitive to abscisic acid and more sensitive to drought than the wild-type plants, whereas the opposite phenotype was observed in 35SPtrRZFP1 plants. In general, PtrRZFP1 negatively regulates the stability of PtrPP2C-9 to mediate poplar drought tolerance. The results of this study provide a theoretical framework for the targeted breeding of drought-tolerant traits in perennial woody plants.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Plant Physiol Ano de publicação: 2024 Tipo de documento: Article País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Plant Physiol Ano de publicação: 2024 Tipo de documento: Article País de publicação: Estados Unidos