Your browser doesn't support javascript.
loading
Smart Cellulose-Based Janus Fabrics with Switchable Liquid Transportation for Personal Moisture and Thermal Management.
Xi, Jianfeng; Lou, Yanling; Meng, Liucheng; Deng, Chao; Chu, Youlu; Xu, Zhaoyang; Xiao, Huining; Wu, Weibing.
Afiliação
  • Xi J; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Jiangsu Provincial Key Lab of Sustainable Pulp and Paper Technology and Biomass Materials, Nanjing Forestry University, Nanjing, 210037, Peopl
  • Lou Y; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Jiangsu Provincial Key Lab of Sustainable Pulp and Paper Technology and Biomass Materials, Nanjing Forestry University, Nanjing, 210037, Peopl
  • Meng L; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Jiangsu Provincial Key Lab of Sustainable Pulp and Paper Technology and Biomass Materials, Nanjing Forestry University, Nanjing, 210037, Peopl
  • Deng C; Macromolecular Chemistry and Bavarian Polymer Institute, University of Bayreuth, Bayreuth, 95440, Germany.
  • Chu Y; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Jiangsu Provincial Key Lab of Sustainable Pulp and Paper Technology and Biomass Materials, Nanjing Forestry University, Nanjing, 210037, Peopl
  • Xu Z; College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
  • Xiao H; Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada.
  • Wu W; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Jiangsu Provincial Key Lab of Sustainable Pulp and Paper Technology and Biomass Materials, Nanjing Forestry University, Nanjing, 210037, Peopl
Nanomicro Lett ; 17(1): 14, 2024 Sep 26.
Article em En | MEDLINE | ID: mdl-39325227
ABSTRACT
The Janus fabrics designed for personal moisture/thermal regulation have garnered significant attention for their potential to enhance human comfort. However, the development of smart and dynamic fabrics capable of managing personal moisture/thermal comfort in response to changing external environments remains a challenge. Herein, a smart cellulose-based Janus fabric was designed to dynamically manage personal moisture/heat. The cotton fabric was grafted with N-isopropylacrylamide to construct a temperature-stimulated transport channel. Subsequently, hydrophobic ethyl cellulose and hydrophilic cellulose nanofiber were sprayed on the bottom and top sides of the fabric to obtain wettability gradient. The fabric exhibits anti-gravity directional liquid transportation from hydrophobic side to hydrophilic side, and can dynamically and continuously control the transportation time in a wide range of 3-66 s as the temperature increases from 10 to 40 °C. This smart fabric can quickly dissipate heat at high temperatures, while at low temperatures, it can slow down the heat dissipation rate and prevent the human from becoming too cold. In addition, the fabric has UV shielding and photodynamic antibacterial properties through depositing graphitic carbon nitride nanosheets on the hydrophilic side. This smart fabric offers an innovative approach to maximizing personal comfort in environments with significant temperature variations.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nanomicro Lett Ano de publicação: 2024 Tipo de documento: Article País de publicação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nanomicro Lett Ano de publicação: 2024 Tipo de documento: Article País de publicação: Alemanha