Your browser doesn't support javascript.
loading
Dataset from a human-in-the-loop approach to identify functionally important protein residues from literature.
Vollmar, Melanie; Tirunagari, Santosh; Harrus, Deborah; Armstrong, David; Gáborová, Romana; Gupta, Deepti; Afonso, Marcelo Querino Lima; Evans, Genevieve; Velankar, Sameer.
Afiliação
  • Vollmar M; Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK. melaniev@ebi.ac.uk.
  • Tirunagari S; Literature Services, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
  • Harrus D; Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
  • Armstrong D; Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
  • Gáborová R; CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic.
  • Gupta D; Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
  • Afonso MQL; Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
  • Evans G; Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
  • Velankar S; Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
Sci Data ; 11(1): 1032, 2024 Sep 27.
Article em En | MEDLINE | ID: mdl-39333508
ABSTRACT
We present a novel system that leverages curators in the loop to develop a dataset and model for detecting structure features and functional annotations at residue-level from standard publication text. Our approach involves the integration of data from multiple resources, including PDBe, EuropePMC, PubMedCentral, and PubMed, combined with annotation guidelines from UniProt, and LitSuggest and HuggingFace models as tools in the annotation process. A team of seven annotators manually curated ten articles for named entities, which we utilized to train a starting PubmedBert model from HuggingFace. Using a human-in-the-loop annotation system, we iteratively developed the best model with commendable performance metrics of 0.90 for precision, 0.92 for recall, and 0.91 for F1-measure. Our proposed system showcases a successful synergy of machine learning techniques and human expertise in curating a dataset for residue-level functional annotations and protein structure features. The results demonstrate the potential for broader applications in protein research, bridging the gap between advanced machine learning models and the indispensable insights of domain experts.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas / Aprendizado de Máquina Limite: Humans Idioma: En Revista: Sci Data Ano de publicação: 2024 Tipo de documento: Article País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas / Aprendizado de Máquina Limite: Humans Idioma: En Revista: Sci Data Ano de publicação: 2024 Tipo de documento: Article País de publicação: Reino Unido