Your browser doesn't support javascript.
loading
The smallest electrochemical bubbles.
Gadea, Esteban D; Perez Sirkin, Yamila A; Molinero, Valeria; Scherlis, Damian A.
Afiliação
  • Gadea ED; Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina.
  • Perez Sirkin YA; Department of Chemistry, The University of Utah, Salt Lake City, UT 84112-0850.
  • Molinero V; Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina.
  • Scherlis DA; Department of Chemistry, The University of Utah, Salt Lake City, UT 84112-0850.
Proc Natl Acad Sci U S A ; 121(41): e2406956121, 2024 Oct 08.
Article em En | MEDLINE | ID: mdl-39356663
ABSTRACT
Many of the relevant electrochemical processes in the context of catalysis or energy conversion and storage, entail the production of gases. This often implicates the nucleation of bubbles at the interface, with the concomitant blockage of the electroactive area leading to overpotentials and Ohmic drop. Nanoelectrodes have been envisioned as assets to revert this effect, by inhibiting bubble formation. Experiments show, however, that nanobubbles nucleate and attach to nanoscale electrodes, imposing a limit to the current, which turns out to be independent of size and applied potential in a wide range from 3 nm to tenths of microns. Here we investigate the potential-current response for disk electrodes of diameters down to a single-atom, employing molecular simulations including electrochemical generation of gas. Our analysis reveals that nanoelectrodes of 1 nm can offer twice as much current as that delivered by electrodes with areas four orders of magnitude larger at the same bias. This boost in the extracted current is a consequence of the destabilization of the gas phase. The grand potential of surface nanobubbles shows they can not reach a thermodynamically stable state on supports below 2 nm. As a result, the electroactive area becomes accessible to the solution and the current turns out to be sensitive to the electrode radius. In this way, our simulations establish that there is an optimal size for the nanoelectrodes, in between the single-atom and ∼3 nm, that optimizes the gas production.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Argentina País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Argentina País de publicação: Estados Unidos