Your browser doesn't support javascript.
loading
In Vitro and In Vivo Biocompatibility of Bacterial Cellulose.
Girard, Vincent-Daniel; Chaussé, Jérémie; Borduas, Martin; Dubuc, Émile; Iorio-Morin, Christian; Brisebois, Simon; Vermette, Patrick.
Afiliação
  • Girard VD; Laboratoire de bio-ingénierie et de biophysique de l'Université de Sherbrooke, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, Québec, Canada.
  • Chaussé J; Centre de recherche du CHUS, Faculté de médecine et des sciences de la santé, Québec, Canada.
  • Borduas M; AxCell Laboratories, Québec, Canada.
  • Dubuc É; Laboratoire de bio-ingénierie et de biophysique de l'Université de Sherbrooke, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, Québec, Canada.
  • Iorio-Morin C; Centre de recherche du CHUS, Faculté de médecine et des sciences de la santé, Québec, Canada.
  • Brisebois S; AxCell Laboratories, Québec, Canada.
  • Vermette P; Centre de recherche du CHUS, Faculté de médecine et des sciences de la santé, Québec, Canada.
J Biomed Mater Res B Appl Biomater ; 112(10): e35488, 2024 Oct.
Article em En | MEDLINE | ID: mdl-39360852
ABSTRACT
Bacterial cellulose is a unique biomaterial produced by various species of bacteria that offers a range of potential applications in the biomedical field. To provide a cost-effective alternative to soft-tissue implants used in cavity infills, remodeling, and subdermal wound healing, in vitro cytotoxicity and in vivo biocompatibility of native bacterial cellulose were investigated. Cytotoxicity was assessed using a metabolic assay on Swiss 3T3 fibroblasts and INS-1832/13 rat insulinoma. Results showed no cytotoxicity, whether the cells were seeded over or under the bacterial cellulose scaffolds. Biocompatibility was performed on Sprague-Dawley rats (males and females, 8 weeks old) by implanting bacterial cellulose membranes subcutaneously for 1 or 12 weeks. The explanted scaffolds were then sliced and stained with hematoxylin and eosin for histological characterization. The first series of results revealed acute and chronic inflammation persisting over 12 weeks. Examination of the explants indicated a high number of granulocytes within the periphery of the bacterial cellulose, suggesting the presence of endotoxins within the membrane, confirmed by a Limulus amebocyte lysate test. This discovery motivated the development of non-pyrogenic bacterial cellulose scaffolds. Following this, a second series of animal experiments was done, in which materials were implanted for 1 or 2 weeks. The results revealed mild inflammation 1 week after implantation, which then diminished to minimal inflammation after 2 weeks. Altogether, this study highlights that unmodified, purified native bacterial cellulose membranes may be used as a cost-effective biomedical device provided that proper endotoxin clearance is achieved.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Teste de Materiais / Celulose / Ratos Sprague-Dawley Limite: Animals Idioma: En Revista: J Biomed Mater Res B Appl Biomater Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Canadá País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Teste de Materiais / Celulose / Ratos Sprague-Dawley Limite: Animals Idioma: En Revista: J Biomed Mater Res B Appl Biomater Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Canadá País de publicação: Estados Unidos