Your browser doesn't support javascript.
loading
Neutron imaging of the deuterium-tritium tamping gas volume in an inertial confinement fusion hohlraum.
Izumi, N; Higginson, D P; Rosen, M D; Riedel, W M; Haines, B M; Fittinghoff, D N; Volegov, P; Youmans, A E; Kemp, A; Chapman, T; Hardy, C; Gjemso, J; Waltz, C; Rogers, S M; Woodworth, B N; Sarginson, T; Cheung, R; Masters, N; Sandoval, R; Cunningham, T; Ramirez, R; Holder, J P; Reynolds, R L; Holunga, D M; Briggs, T M; Vonhof, S; Roskopf, N T; Schlossberg, D; Moore, A S; Kerr, S; Hahn, K D; Reichelt, B L; Mackinnon, A J; Moody, J D; Ross, J S; Hinkel, D.
Afiliação
  • Izumi N; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Higginson DP; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Rosen MD; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Riedel WM; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Haines BM; Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
  • Fittinghoff DN; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Volegov P; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Youmans AE; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Kemp A; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Chapman T; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Hardy C; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Gjemso J; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Waltz C; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Rogers SM; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Woodworth BN; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Sarginson T; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Cheung R; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Masters N; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Sandoval R; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Cunningham T; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Ramirez R; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Holder JP; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Reynolds RL; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Holunga DM; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Briggs TM; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Vonhof S; General Atomics, La Jolla, California 92121, USA.
  • Roskopf NT; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Schlossberg D; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Moore AS; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Kerr S; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Hahn KD; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Reichelt BL; Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
  • Mackinnon AJ; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Moody JD; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Ross JS; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Hinkel D; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
Rev Sci Instrum ; 95(10)2024 Oct 01.
Article em En | MEDLINE | ID: mdl-39365111
ABSTRACT
To benchmark the accuracy of the models and improve the predictive capability of future experiments, the National Ignition Facility requires measurements of the physical conditions inside inertial confinement fusion hohlraums. The ion temperature and bulk motion velocity of the gas-filled regions of the hohlraum can be obtained by replacing the helium tamping gas in the hohlraum with deuterium-tritium (DT) gas and measuring the Doppler broadening and Doppler shift of the neutron spectrum produced by nuclear reactions in the hohlraum. To understand the spatial distribution of the neutron production inside the hohlraum, we have developed a new penumbral neutron imager with a 12 mm diameter field of view using a simple tungsten alloy spindle. We performed the first experiment using this imager on a DT gas-filled hohlraum and successfully obtained the spatial distribution of neutron production in the hohlraum plasma. We will report on the design of the spindle, characterization of the detectors, and methodology of the image reconstruction.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Rev Sci Instrum Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Rev Sci Instrum Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Estados Unidos