Your browser doesn't support javascript.
loading
Predicting the Risk of Maxillary Canine Impaction Based on Maxillary Measurements Using Supervised Machine Learning.
de Araujo, Cristiano Miranda; Freitas, Pedro Felipe de Jesus; Ferraz, Aline Xavier; Andreis, Patricia Kern Di Scala; Meger, Michelle Nascimento; Baratto-Filho, Flares; Augusto Rodenbusch Poletto, Cesar; Küchler, Erika Calvano; Camargo, Elisa Souza; Schroder, Angela Graciela Deliga.
Afiliação
  • de Araujo CM; School of Dentistry, Tuiuti University of Paraná, Curitiba, Paraná, Brazil.
  • Freitas PFJ; School of Dentistry, Tuiuti University of Paraná, Curitiba, Paraná, Brazil.
  • Ferraz AX; Postgraduate Program in Human Communication Health, Tuiuti University of Paraná, Curitiba, Paraná, Brazil.
  • Andreis PKDS; Graduate Program in Dentistry, Department of Orthodontics, Pontifícia Universidade Católica Do Paraná, Curitiba, Brazil.
  • Meger MN; School of Dentistry, Tuiuti University of Paraná, Curitiba, Paraná, Brazil.
  • Baratto-Filho F; School of Dentistry, Tuiuti University of Paraná, Curitiba, Paraná, Brazil.
  • Augusto Rodenbusch Poletto C; Graduate Program in Dentistry, Department of Dental Radiology, Centro Universitário Unifacvest, Curitiba, Brazil.
  • Küchler EC; Department of Orthodontics, University Hospital Bonn, Medical Faculty, Bonn, Germany.
  • Camargo ES; Graduate Program in Dentistry, Orthodontics, Pontifícia Universidade Católica Do Paraná, Curitiba, Brazil.
  • Schroder AGD; School of Dentistry, Tuiuti University of Paraná, Curitiba, Paraná, Brazil.
Orthod Craniofac Res ; 2024 Oct 04.
Article em En | MEDLINE | ID: mdl-39365255
ABSTRACT

OBJECTIVES:

To predict palatally impacted maxillary canines based on maxilla measurements through supervised machine learning techniques. MATERIALS AND

METHODS:

The maxilla images from 138 patients were analysed to investigate intermolar width, interpremolar width, interpterygoid width, maxillary length, maxillary width, nasal cavity width and nostril width, obtained through cone beam computed tomography scans. The predictive models were built using the following machine learning algorithms Adaboost Classifier, Decision Tree, Gradient Boosting Classifier, K-Nearest Neighbours (KNN), Logistic Regression, Multilayer Perceptron Classifier (MLP), Random Forest Classifier and Support Vector Machine (SVM). A 5-fold cross-validation approach was employed to validate each model. Metrics such as area under the curve (AUC), accuracy, recall, precision and F1 Score were calculated for each model, and ROC curves were constructed.

RESULTS:

The predictive model included four variables (two dental and two skeletal measurements). The interpterygoid width and nostril width showed the largest effect sizes. The Gradient Boosting Classifier algorithm exhibited the best metrics, with AUC values ranging from 0.91 [CI95% = 0.74-0.98] for test data to 0.89 [CI95% = 0.86-0.94] for crossvalidation. The nostril width variable demonstrated the highest importance across all tested algorithms.

CONCLUSION:

The use of maxillary measurements, through supervised machine learning techniques, is a promising method for predicting palatally impacted maxillary canines. Among the models evaluated, both the Gradient Boosting Classifier and the Random Forest Classifier demonstrated the best performance metrics, with accuracy and AUC values exceeding 0.8, indicating strong predictive capability.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Orthod Craniofac Res Assunto da revista: ODONTOLOGIA / ORTODONTIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Brasil País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Orthod Craniofac Res Assunto da revista: ODONTOLOGIA / ORTODONTIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Brasil País de publicação: Reino Unido