Your browser doesn't support javascript.
loading
Effects of Stress on Biological Characteristics and Metabolism of Periodontal Ligament Stem Cells of Deciduous Teeth.
Li, Zhengyang; Li, Jinyi; Dai, Shanshan; Su, Xuelong; Ren, Meiyue; He, Shuyang; Guo, Qingyu; Liu, Fei.
Afiliação
  • Li Z; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; Department of Pediatric Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.
  • Li J; Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, China.
  • Dai S; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; Department of Pediatric Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.
  • Su X; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; Department of Pediatric Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.
  • Ren M; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; Department of Pediatric Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.
  • He S; Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR China.
  • Guo Q; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; Department of Pediatric Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, China. Electronic address: guoqinyu@mail.xjtu.edu.cn.
  • Liu F; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; Department of Pediatric Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, China. Electronic address: liufei6630@mail.xjtu.edu.cn.
Int Dent J ; 2024 Oct 05.
Article em En | MEDLINE | ID: mdl-39370340
ABSTRACT
INTRODUCTION AND

AIMS:

Periodontal ligament stem cells (PDLSCs) from deciduous teeth (DePDLSCs) can perceive and respond to mechanical signals upon exposure to various environments. The effects of mechanical stress on the biological characteristics and metabolism of DePDLSCs were investigated using in vitro stress loading.

METHODS:

DePDLSCs were subjected to mechanical stresses of different strengths. Cell proliferation, expression of osteogenic/osteoclastic factors, apoptosis, and oxidative stress levels were evaluated using CCK-8 assays, alkaline phosphatase staining, real-time PCR, flow cytometry, and malondialdehyde and superoxide dismutase assays. Liquid chromatography-mass spectrometry was used to perform nontargeted metabolomic detection and analysis.

RESULTS:

Under stresses of 75 and 150 kPa, the expression of osteogenesis-related factors OPG, ALP, and RUNX2 decreased, and the ratio of RANKL/OPG significantly increased. A pressure of 150 kPa induced oxidative stress and caused a significant increase in cell apoptosis. Among the differential metabolites screened from the 150 kPa group, spermine, spermidine, ceramide, phosphatidylethanolamine, lysophosphatidylethanolamine, linoleic acid, and docosatrienoic acid were the most significantly upregulated. The metabolites screened from the 75 kPa group were mainly related to glycerophospholipid and sphingolipid metabolism, oxidative phosphorylation, and mineral absorption, which were common pathways affected in both experimental groups.

CONCLUSION:

A certain degree of mechanical stress can inhibit the proliferative activity and osteogenic differentiation of DePDLSCs, enhance their osteoclast-inducing ability, and cause elevated levels of cell apoptosis and oxidative stress. The metabolic expression profile of DePDLSCs changed significantly under stress. Understanding changes in cellular activity and metabolic reactions may provide an experimental basis for elucidating the role of mechanical stress in root resorption and periodontal tissue remodelling of deciduous teeth. CLINICAL RELEVANCE Mechanical stress may affect periodontal tissue remodeling and root resorption of DePDLSc.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Int Dent J / Int. dent. j / International dental journal Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Int Dent J / Int. dent. j / International dental journal Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China País de publicação: Reino Unido