Your browser doesn't support javascript.
loading
Introducing KICK-MEP: exploring potential energy surfaces in systems with significant non-covalent interactions.
García-Argote, Williams; Ruiz, Lina; Inostroza, Diego; Cardenas, Carlos; Yañez, Osvaldo; Tiznado, William.
Afiliação
  • García-Argote W; Centro de Química Teórica & Computacional (CQT&C), Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, Avenida República 275, 8370146, Santiago de Chile, Chile.
  • Ruiz L; Doctorado en Fisicoquímica Molecular, Facultad de Ciencias Exactas, Universidad Andres Bello, República 275, Santiago, Chile.
  • Inostroza D; Centro de Investigación Biomédica, Universidad Autónoma de Chile, 7500912, Santiago, Chile.
  • Cardenas C; Centro de Química Teórica & Computacional (CQT&C), Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, Avenida República 275, 8370146, Santiago de Chile, Chile.
  • Yañez O; Departamento de Física, Facultad de Ciencias, Universidad de Chile, 7800024, Ñuñoa, Santiago, Chile. cardena@uchile.cl.
  • Tiznado W; Center for the Development of Nanoscience and Nanotechnology (CEDENNA), 9170124, Santiago, Chile. cardena@uchile.cl.
J Mol Model ; 30(11): 369, 2024 Oct 08.
Article em En | MEDLINE | ID: mdl-39377846
ABSTRACT
CONTEXT Exploring potential energy surfaces (PES) is fundamental in computational chemistry, as it provides insights into the relationship between molecular energy, geometry, and chemical reactivity. We introduce Kick-MEP, a hybrid method for exploring the PES of atomic and molecular clusters, particularly those dominated by non-covalent interactions. Kick-MEP computes the Coulomb integral between the maximum and minimum electrostatic potential values on a 0.001 a.u. electron density isosurface for two interacting fragments. This approach efficiently estimates interaction energies and selects low-energy configurations at reduced computational cost. Kick-MEP was evaluated on silicon-lithium clusters, water clusters, and thymol encapsulated within Cucurbit[7]uril, consistently identifying the lowest energy structures, including global minima and relevant local minima.

METHODS:

Kick-MEP generates an initial population of molecular structures using the stochastic Kick algorithm, which combines two molecular fragments (A and B). The molecular electrostatic potential (MEP) values on a 0.001 a.u. electron density isosurface for each fragment are used to compute the Coulomb integral between them. Structures with the lowest Coulomb integral are selected and refined through gradient-based optimization and DFT calculations at the PBE0-D3/Def2-TZVP level. Molecular docking simulations for the thymol-Cucurbit[7]uril complex using AutoDock Vina were performed for benchmarking. Kick-MEP was validated across different molecular systems, demonstrating its effectiveness in identifying the lowest energy structures, including global minima and relevant local minima, while maintaining a low computational cost.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Mol Model Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Chile País de publicação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Mol Model Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Chile País de publicação: Alemanha