Your browser doesn't support javascript.
loading
Artificial intelligence in mammography: a systematic review of the external validation.
Branco, Paulo Eduardo Souza Castelo; Franco, Adriane Helena Silva; de Oliveira, Amanda Prates; Carneiro, Isabela Maurício Costa; de Carvalho, Luciana Maurício Costa; de Souza, Jonathan Igor Nunes; Leandro, Danniel Rodrigo; Cândido, Eduardo Batista.
Afiliação
  • Branco PESC; Faculdade de Medicina Faculdade de Minas Belo HorizonteMG Brazil Faculdade de Medicina, Faculdade de Minas, Belo Horizonte, MG, Brazil.
  • Franco AHS; Faculdade de Medicina Faculdade de Minas Belo HorizonteMG Brazil Faculdade de Medicina, Faculdade de Minas, Belo Horizonte, MG, Brazil.
  • de Oliveira AP; Faculdade de Medicina Faculdade de Minas Belo HorizonteMG Brazil Faculdade de Medicina, Faculdade de Minas, Belo Horizonte, MG, Brazil.
  • Carneiro IMC; Faculdade de Medicina Faculdade de Minas Belo HorizonteMG Brazil Faculdade de Medicina, Faculdade de Minas, Belo Horizonte, MG, Brazil.
  • de Carvalho LMC; Faculdade de Medicina Faculdade de Minas Belo HorizonteMG Brazil Faculdade de Medicina, Faculdade de Minas, Belo Horizonte, MG, Brazil.
  • de Souza JIN; Faculdade de Medicina Universidade Federal dos Vales do Jequitinhonha e Mucuri DiamantinaMG Brazil Faculdade de Medicina, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil.
  • Leandro DR; Universidade Federal de Minas Gerais Belo HorizonteMG Brazil Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
  • Cândido EB; Universidade Federal de Minas Gerais Belo HorizonteMG Brazil Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
Article em En | MEDLINE | ID: mdl-39380589
ABSTRACT

Objective:

To conduct a systematic review of external validation studies on the use of different Artificial Intelligence algorithms in breast cancer screening with mammography. Data source Our systematic review was conducted and reported following the PRISMA statement, using the PubMed, EMBASE, and Cochrane databases with the search terms "Artificial Intelligence," "Mammography," and their respective MeSH terms. We filtered publications from the past ten years (2014 - 2024) and in English. Study selection A total of 1,878 articles were found in the databases used in the research. After removing duplicates (373) and excluding those that did not address our PICO question (1,475), 30 studies were included in this work. Data collection The data from the studies were collected independently by five authors, and it was subsequently synthesized based on sample data, location, year, and their main results in terms of AUC, sensitivity, and specificity. Data

synthesis:

It was demonstrated that the Area Under the ROC Curve (AUC) and sensitivity were similar to those of radiologists when using independent Artificial Intelligence. When used in conjunction with radiologists, statistically higher accuracy in mammogram evaluation was reported compared to the assessment by radiologists alone.

Conclusion:

AI algorithms have emerged as a means to complement and enhance the performance and accuracy of radiologists. They also assist less experienced professionals in detecting possible lesions. Furthermore, this tool can be used to complement and improve the analyses conducted by medical professionals.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias da Mama / Inteligência Artificial / Mamografia Limite: Female / Humans Idioma: En Revista: Rev Bras Ginecol Obstet Assunto da revista: GINECOLOGIA / OBSTETRICIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Brasil País de publicação: Brasil

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias da Mama / Inteligência Artificial / Mamografia Limite: Female / Humans Idioma: En Revista: Rev Bras Ginecol Obstet Assunto da revista: GINECOLOGIA / OBSTETRICIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Brasil País de publicação: Brasil