Your browser doesn't support javascript.
loading
SARS-CoV-2 infection, neuropathogenesis and transmission among deer mice: Implications for reverse zoonosis to New World rodents
Anna Fagre; Juliette Lewis; Miles Eckley; Shijun Zhan; Savannah M Rocha; Nicole R Sexton; Bradly Burke; Brian J Geiss; Olve Peersen; Rebekah Kading; Joel Rovnak; Gregory D Ebel; Ronald B Tjalkens; Tawfik Aboellail; Tony Schountz.
Afiliação
  • Anna Fagre; Colorado State University
  • Juliette Lewis; Colorado State University
  • Miles Eckley; Colorado State University
  • Shijun Zhan; Colorado State University
  • Savannah M Rocha; Colorado State University
  • Nicole R Sexton; Colorado State University
  • Bradly Burke; Colorado State University
  • Brian J Geiss; Colorado State University
  • Olve Peersen; Colorado State University
  • Rebekah Kading; Colorado State University
  • Joel Rovnak; Colorado State University
  • Gregory D Ebel; Colorado State University
  • Ronald B Tjalkens; Colorado State University
  • Tawfik Aboellail; Colorado State University
  • Tony Schountz; Colorado State University
Preprint em En | PREPRINT-BIORXIV | ID: ppbiorxiv-241810
Artigo de periódico
Um artigo publicado em periódico científico está disponível e provavelmente é baseado neste preprint, por meio do reconhecimento de similaridade realizado por uma máquina. A confirmação humana ainda está pendente.
Ver artigo de periódico
ABSTRACT
Coronavirus disease-19 (COVID-19) emerged in November, 2019 in China and rapidly became pandemic. As with other coronaviruses, a preponderance of evidence suggests the virus originated in horseshoe bats (Rhinolophus spp.) and likely underwent a recombination event in an intermediate host prior to entry into human populations. A significant concern is that SARS-CoV-2 could become established in secondary reservoir hosts outside of Asia. To assess this potential, we challenged deer mice (Peromyscus maniculatus) with SARS-CoV-2 and found robust virus replication in the upper respiratory tract, lungs and intestines, with detectable viral RNA for up to 21 days in oral swabs and 14 days in lungs. Virus entry into the brain also occurred, likely via gustatory-olfactory-trigeminal pathway with eventual compromise to the blood brain barrier. Despite this, no conspicuous signs of disease were observed and no deer mice succumbed to infection. Expression of several innate immune response genes were elevated in the lungs, notably IFN, Cxcl10, Oas2, Tbk1 and Pycard. Elevated CD4 and CD8{beta} expression in the lungs was concomitant with Tbx21, IFN{gamma} and IL-21 expression, suggesting a type I inflammatory immune response. Contact transmission occurred from infected to naive deer mice through two passages, showing sustained natural transmission. In the second deer mouse passage, an insertion of 4 amino acids occurred to fixation in the N-terminal domain of the spike protein that is predicted to form a solvent-accessible loop. Subsequent examination of the source virus from BEI Resources indicated the mutation was present at very low levels, demonstrating potent purifying selection for the insert during in vivo passage. Collectively, this work has determined that deer mice are a suitable animal model for the study of SARS-CoV-2 pathogenesis, and that they have the potential to serve as secondary reservoir hosts that could lead to periodic outbreaks of COVID-19 in North America.
Licença
cc_by_nc_nd
Texto completo: 1 Coleções: 09-preprints Base de dados: PREPRINT-BIORXIV Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2020 Tipo de documento: Preprint
Texto completo: 1 Coleções: 09-preprints Base de dados: PREPRINT-BIORXIV Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2020 Tipo de documento: Preprint