Your browser doesn't support javascript.
loading
Structure and dynamics of SARS-CoV-2 proofreading exoribonuclease ExoN
Nicholas H Moeller; Ke Shi; Özlem Demir; Surajit Banerjee; Lulu Yin; Christopher Belica; Cameron Durfee; Rommie E Amaro; Hideki Aihara.
Afiliação
  • Nicholas H Moeller; University of Minnesota
  • Ke Shi; University of Minnesota
  • Özlem Demir; University of California, San Diego
  • Surajit Banerjee; Cornell University
  • Lulu Yin; University of Minnesota
  • Christopher Belica; University of Minnesota
  • Cameron Durfee; University of Minnesota
  • Rommie E Amaro; University of California, San Diego
  • Hideki Aihara; University of Minnesota
Preprint em En | PREPRINT-BIORXIV | ID: ppbiorxiv-438274
ABSTRACT
High-fidelity replication of the large RNA genome of coronaviruses (CoVs) is mediated by a 3'-to-5' exoribonuclease (ExoN) in non-structural protein 14 (nsp14), which excises nucleotides including antiviral drugs mis-incorporated by the low-fidelity viral RNA-dependent RNA polymerase (RdRp) and has also been implicated in viral RNA recombination and resistance to innate immunity. Here we determined a 1.6-[A] resolution crystal structure of SARS-CoV-2 ExoN in complex with its essential co-factor, nsp10. The structure shows a highly basic and concave surface flanking the active site, comprising several Lys residues of nsp14 and the N-terminal amino group of nsp10. Modeling suggests that this basic patch binds to the template strand of double-stranded RNA substrates to position the 3' end of the nascent strand in the ExoN active site, which is corroborated by mutational and computational analyses. Molecular dynamics simulations further show remarkable flexibility of multi-domain nsp14 and suggest that nsp10 stabilizes ExoN for substrate RNA-binding to support its exoribonuclease activity. Our high-resolution structure of the SARS-CoV-2 ExoN-nsp10 complex serves as a platform for future development of anti-coronaviral drugs or strategies to attenuate the viral virulence.
Licença
cc_by_nc_nd
Texto completo: 1 Coleções: 09-preprints Base de dados: PREPRINT-BIORXIV Idioma: En Ano de publicação: 2021 Tipo de documento: Preprint
Texto completo: 1 Coleções: 09-preprints Base de dados: PREPRINT-BIORXIV Idioma: En Ano de publicação: 2021 Tipo de documento: Preprint