Your browser doesn't support javascript.
loading
Antibodies to the SARS-CoV-2 receptor-binding domain that maximize breadth and resistance to viral escape
Tyler N Starr; Nadine Czudnochowski; Fabrizia Zatta; Young-Jun Park; Zhuoming Liu; Amin Addetia; Dora Pinto; Martina Beltramello; Patrick Hernandez; Allison J Greaney; Roberta Marzi; William G Glass; Ivy Zhang; Adam S Dingens; John E Bowen; Jason A Wojcechowskyj; Anna De Marco; Laura E Rosen; Jiayi Zhou; Martin Montiel-Ruiz; Hannah Kaiser; Heather Tucker; Michael P. Housley; Julia Di Iulio; Gloria Lombardo; Maria Agostini; Nicole Sprugasci; Katja Culap; Stefano Jaconi; Marcel Meury; Exequiel Dellota; Elisabetta Cameroni; Tristan I Croll; Jay C Nix; Colin Havenar-Daughton; Amalio Telenti; Florian A Lempp; Matteo Samuele Pizzuto; John D Chodera; Christy M Hebner; Sean PJ Whelan; Herbert W Virgin; David Veesler; Davide Corti; Jesse D Bloom; Gyorgy Snell.
Afiliação
  • Tyler N Starr; Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
  • Nadine Czudnochowski; Vir Biotechnology, San Francisco, CA 94158, USA
  • Fabrizia Zatta; Humabs BioMed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
  • Young-Jun Park; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
  • Zhuoming Liu; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
  • Amin Addetia; Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
  • Dora Pinto; Humabs BioMed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
  • Martina Beltramello; Humabs BioMed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
  • Patrick Hernandez; Vir Biotechnology, San Francisco, CA 94158, USA
  • Allison J Greaney; Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98
  • Roberta Marzi; Humabs BioMed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
  • William G Glass; Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
  • Ivy Zhang; Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Tri-Institutional PhD Pro
  • Adam S Dingens; Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
  • John E Bowen; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
  • Jason A Wojcechowskyj; Vir Biotechnology, San Francisco, CA 94158, USA
  • Anna De Marco; Humabs BioMed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
  • Laura E Rosen; Vir Biotechnology, San Francisco, CA 94158, USA
  • Jiayi Zhou; Vir Biotechnology, San Francisco, CA 94158, USA
  • Martin Montiel-Ruiz; Vir Biotechnology, San Francisco, CA 94158, USA
  • Hannah Kaiser; Vir Biotechnology, San Francisco, CA 94158, USA
  • Heather Tucker; Vir Biotechnology, San Francisco, CA 94158, USA
  • Michael P. Housley; Vir Biotechnology, San Francisco, CA 94158, USA
  • Julia Di Iulio; Vir Biotechnology, San Francisco, CA 94158, USA
  • Gloria Lombardo; Humabs BioMed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
  • Maria Agostini; Vir Biotechnology, San Francisco, CA 94158, USA
  • Nicole Sprugasci; Humabs BioMed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
  • Katja Culap; Humabs BioMed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
  • Stefano Jaconi; Humabs BioMed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
  • Marcel Meury; Vir Biotechnology, San Francisco, CA 94158, USA
  • Exequiel Dellota; Vir Biotechnology, San Francisco, CA 94158, USA
  • Elisabetta Cameroni; Humabs BioMed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
  • Tristan I Croll; Cambridge Institute for Medical Research, Department of Haematology, University of Cambridge, Cambridge, CB2 0XY, UK
  • Jay C Nix; Molecular Biology Consortium, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
  • Colin Havenar-Daughton; Vir Biotechnology, San Francisco, CA 94158, USA
  • Amalio Telenti; Vir Biotechnology, San Francisco, CA 94158, USA
  • Florian A Lempp; Vir Biotechnology, San Francisco, CA 94158, USA
  • Matteo Samuele Pizzuto; Humabs BioMed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
  • John D Chodera; Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
  • Christy M Hebner; Vir Biotechnology, San Francisco, CA 94158, USA
  • Sean PJ Whelan; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
  • Herbert W Virgin; Vir Biotechnology, San Francisco, CA 94158, USA; Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; D
  • David Veesler; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
  • Davide Corti; Humabs BioMed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
  • Jesse D Bloom; Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98
  • Gyorgy Snell; Vir Biotechnology, San Francisco, CA 94158, USA
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-438709
ABSTRACT
An ideal anti-SARS-CoV-2 antibody would resist viral escape1-3, have activity against diverse SARS-related coronaviruses4-7, and be highly protective through viral neutralization8-11 and effector functions12,13. Understanding how these properties relate to each other and vary across epitopes would aid development of antibody therapeutics and guide vaccine design. Here, we comprehensively characterize escape, breadth, and potency across a panel of SARS-CoV-2 antibodies targeting the receptor-binding domain (RBD), including S3094, the parental antibody of the late-stage clinical antibody VIR-7831. We observe a tradeoff between SARS-CoV-2 in vitro neutralization potency and breadth of binding across SARS-related coronaviruses. Nevertheless, we identify several neutralizing antibodies with exceptional breadth and resistance to escape, including a new antibody (S2H97) that binds with high affinity to all SARS-related coronavirus clades via a unique RBD epitope centered on residue E516. S2H97 and other escape-resistant antibodies have high binding affinity and target functionally constrained RBD residues. We find that antibodies targeting the ACE2 receptor binding motif (RBM) typically have poor breadth and are readily escaped by mutations despite high neutralization potency, but we identify one potent RBM antibody (S2E12) with breadth across sarbecoviruses closely related to SARS-CoV-2 and with a high barrier to viral escape. These data highlight functional diversity among antibodies targeting the RBD and identify epitopes and features to prioritize for antibody and vaccine development against the current and potential future pandemics.
Licença
cc_by_nc_nd
Texto completo: Disponível Coleções: Preprints Base de dados: bioRxiv Tipo de estudo: Estudo prognóstico Idioma: Inglês Ano de publicação: 2021 Tipo de documento: Preprint
Texto completo: Disponível Coleções: Preprints Base de dados: bioRxiv Tipo de estudo: Estudo prognóstico Idioma: Inglês Ano de publicação: 2021 Tipo de documento: Preprint
...