Your browser doesn't support javascript.
loading
Discovery of SARS-CoV-2 Mpro Peptide Inhibitors from Modelling Substrate and Ligand Binding
H. T. Henry Chan; Marc A. Moesser; Rebecca K. Walters; Tika R. Malla; Rebecca M. Twidale; Tobias John; Helen M. Deeks; Tristan Johnston-Wood; Victor Mikhailov; Richard B. Sessions; William Dawson; Eidarus Salah; Petra Lukacik; Claire Strain-Damerell; David Owen; Takahito Nakajima; Katarzyna Swiderek; Alessio Lodola; Vicent Moliner; David R. Glowacki; Martin A. Walsh; Christopher J. Schofield; Luigi Genovese; Deborah Shoemark; Adrian J. Mulholland; Fernanda Duarte; Garrett M. Morris.
Afiliação
  • H. T. Henry Chan; University of Oxford
  • Marc A. Moesser; University of Oxford
  • Rebecca K. Walters; University of Bristol
  • Tika R. Malla; University of Oxford
  • Rebecca M. Twidale; University of Bristol
  • Tobias John; University of Oxford
  • Helen M. Deeks; University of Bristol
  • Tristan Johnston-Wood; University of Oxford
  • Victor Mikhailov; University of Oxford
  • Richard B. Sessions; University of Bristol
  • William Dawson; RIKEN R-CCS
  • Eidarus Salah; University of Oxford
  • Petra Lukacik; Diamond Light Source Ltd
  • Claire Strain-Damerell; Diamond Light Source Ltd
  • David Owen; Diamond Light Source Ltd
  • Takahito Nakajima; RIKEN R-CCS
  • Katarzyna Swiderek; Universitat Jaume I
  • Alessio Lodola; University of Parma
  • Vicent Moliner; Universitat Jaume I
  • David R. Glowacki; University of Bristol
  • Martin A. Walsh; Diamond Light Source Ltd
  • Christopher J. Schofield; University of Oxford
  • Luigi Genovese; University of Grenoble
  • Deborah Shoemark; University of Bristol
  • Adrian J. Mulholland; University of Bristol
  • Fernanda Duarte; University of Oxford
  • Garrett M. Morris; University of Oxford
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-446355
ABSTRACT
The main protease (Mpro) of SARS-CoV-2 is central to its viral lifecycle and is a promising drug target, but little is known concerning structural aspects of how it binds to its 11 natural cleavage sites. We used biophysical and crystallographic data and an array of classical molecular mechanics and quantum mechanical techniques, including automated docking, molecular dynamics (MD) simulations, linear-scaling DFT, QM/MM, and interactive MD in virtual reality, to investigate the molecular features underlying recognition of the natural Mpro substrates. Analyses of the subsite interactions of modelled 11-residue cleavage site peptides, ligands from high-throughput crystallography, and designed covalently binding inhibitors were performed. Modelling studies reveal remarkable conservation of hydrogen bonding patterns of the natural Mpro substrates, particularly on the N-terminal side of the scissile bond. They highlight the critical role of interactions beyond the immediate active site in recognition and catalysis, in particular at the P2/S2 sites. The binding modes of the natural substrates, together with extensive interaction analyses of inhibitor and fragment binding to Mpro, reveal new opportunities for inhibition. Building on our initial Mpro-substrate models, computational mutagenesis scanning was employed to design peptides with improved affinity and which inhibit Mpro competitively. The combined results provide new insight useful for the development of Mpro inhibitors.
Licença
cc_by_nc
Texto completo: Disponível Coleções: Preprints Base de dados: bioRxiv Idioma: Inglês Ano de publicação: 2021 Tipo de documento: Preprint
Texto completo: Disponível Coleções: Preprints Base de dados: bioRxiv Idioma: Inglês Ano de publicação: 2021 Tipo de documento: Preprint
...