Your browser doesn't support javascript.
loading
SARS-CoV-2 sensitive to type I interferon pretreatment.
Kumari G Lokugamage; Adam Hage; Maren Devries; Ana M Vallero-Jimenez; Craig Schindewolf; Meike Dittmann; Ricardo Rajsbaum; Vineet D Menachery.
Afiliação
  • Kumari G Lokugamage; University of Texas Medical Branch
  • Adam Hage; University of Texas Medical Branch at Galveston
  • Maren Devries; New York University School of Medicine
  • Ana M Vallero-Jimenez; New York University School of Medicine
  • Craig Schindewolf; University of Texas Medical Branch
  • Meike Dittmann; New York University School of Medicine
  • Ricardo Rajsbaum; University of Texas Medical Branch
  • Vineet D Menachery; University of Texas Medical Branch
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-982264
ABSTRACT
SARS-CoV-2, a novel coronavirus (CoV) that causes COVID-19, has recently emerged causing an ongoing outbreak of viral pneumonia around the world. While distinct from SARS-CoV, both group 2B CoVs share similar genome organization, origins to bat CoVs, and an arsenal of immune antagonists. In this report, we evaluate type-I interferon (IFN-I) sensitivity of SARS-CoV-2 relative to the original SARS-CoV. Our results indicate that while SARS-CoV-2 maintains similar viral replication to SARS-CoV, the novel CoV is much more sensitive to IFN-I. In Vero and in Calu3 cells, SARS-CoV-2 is substantially attenuated in the context of IFN-I pretreatment, while SARS-CoV is not. In line with these findings, SARS-CoV-2 fails to counteract phosphorylation of STAT1 and expression of ISG proteins, while SARS-CoV is able to suppress both. Comparing SARS-CoV-2 and influenza A virus in human airway epithelial cultures (HAEC), we observe the absence of IFN-I stimulation by SARS-CoV-2 alone, but detect failure to counteract STAT1 phosphorylation upon IFN-I pretreatment resulting in near ablation of SARS-CoV-2 infection. Next, we evaluated IFN-I treatment post infection and found SARS-CoV-2 was sensitive even after establishing infection. Finally, we examined homology between SARS-CoV and SARS-CoV-2 in viral proteins shown to be interferon antagonists. The absence of an equivalent open reading frame (ORF) 3b and changes to ORF6 suggest the two key IFN-I antagonists may not maintain equivalent function in SARS-CoV-2. Together, the results identify key differences in susceptibility to IFN-I responses between SARS-CoV and SARS-CoV-2 that may help inform disease progression, treatment options, and animal model development. ImportanceWith the ongoing outbreak of COVID-19, differences between SARS-CoV-2 and the original SARS-CoV could be leveraged to inform disease progression and eventual treatment options. In addition, these findings could have key implications for animal model development as well as further research into how SARS-CoV-2 modulates the type I IFN response early during infection. Article SummarySARS-CoV-2 has similar replication kinetics to SARS-CoV, but demonstrates significant sensitivity to type I interferon treatment.
Licença
cc_by_nc
Texto completo: Disponível Coleções: Preprints Base de dados: bioRxiv Tipo de estudo: Estudo diagnóstico / Experimental_studies Idioma: Inglês Ano de publicação: 2020 Tipo de documento: Preprint
Texto completo: Disponível Coleções: Preprints Base de dados: bioRxiv Tipo de estudo: Estudo diagnóstico / Experimental_studies Idioma: Inglês Ano de publicação: 2020 Tipo de documento: Preprint
...