Your browser doesn't support javascript.
loading
A deep learning algorithm using CT images to screen for Corona Virus Disease (COVID-19)
Shuai Wang; Bo Kang; Jinlu Ma; Xianjun Zeng; Mingming Xiao; Jia Guo; Mengjiao Cai; Jingyi Yang; Yaodong Li; Xiangfei Meng; Bo Xu.
Afiliação
  • Shuai Wang; Tianjin Medical University Cancer Institute and Hospital
  • Bo Kang; Tianjin University, National Supercomputing Center of Tianjin
  • Jinlu Ma; First Affiliated Hospital, Xian Jiaotong University
  • Xianjun Zeng; Nanchang University First Hospital
  • Mingming Xiao; Tianjin Medical University Cancer Institute and Hospital
  • Jia Guo; National Supercomputing Center of Tianjin
  • Mengjiao Cai; First Affiliated Hospital, Xian Jiaotong University
  • Jingyi Yang; First Affiliated Hospital, Xian Jiaotong University
  • Yaodong Li; No.8 Hospital, Xian Medical College
  • Xiangfei Meng; National Supercomputing Center of Tianjin
  • Bo Xu; Tianjin Medical University Cancer Institute and Hospital
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20023028
Artigo de periódico
Um artigo publicado em periódico científico está disponível e provavelmente é baseado neste preprint, por meio do reconhecimento de similaridade realizado por uma máquina. A confirmação humana ainda está pendente.
Ver artigo de periódico
ABSTRACT
BackgroundThe outbreak of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-COV-2) has caused more than 2.5 million cases of Corona Virus Disease (COVID-19) in the world so far, with that number continuing to grow. To control the spread of the disease, screening large numbers of suspected cases for appropriate quarantine and treatment is a priority. Pathogenic laboratory testing is the gold standard but is time-consuming with significant false negative results. Therefore, alternative diagnostic methods are urgently needed to combat the disease. Based on COVID-19 radiographical changes in CT images, we hypothesized that Artificial Intelligences deep learning methods might be able to extract COVID-19s specific graphical features and provide a clinical diagnosis ahead of the pathogenic test, thus saving critical time for disease control. Methods and FindingsWe collected 1,065 CT images of pathogen-confirmed COVID-19 cases (325 images) along with those previously diagnosed with typical viral pneumonia (740 images). We modified the Inception transfer-learning model to establish the algorithm, followed by internal and external validation. The internal validation achieved a total accuracy of 89.5% with specificity of 0.88 and sensitivity of 0.87. The external testing dataset showed a total accuracy of 79.3% with specificity of 0.83 and sensitivity of 0.67. In addition, in 54 COVID-19 images that first two nucleic acid test results were negative, 46 were predicted as COVID-19 positive by the algorithm, with the accuracy of 85.2%. ConclusionThese results demonstrate the proof-of-principle for using artificial intelligence to extract radiological features for timely and accurate COVID-19 diagnosis. Author summaryTo control the spread of the COVID-19, screening large numbers of suspected cases for appropriate quarantine and treatment measures is a priority. Pathogenic laboratory testing is the gold standard but is time-consuming with significant false negative results. Therefore, alternative diagnostic methods are urgently needed to combat the disease. We hypothesized that Artificial Intelligences deep learning methods might be able to extract COVID-19s specific graphical features and provide a clinical diagnosis ahead of the pathogenic test, thus saving critical time. We collected 1,065 CT images of pathogen-confirmed COVID-19 cases along with those previously diagnosed with typical viral pneumonia. We modified the Inception transfer-learning model to establish the algorithm. The internal validation achieved a total accuracy of 89.5% with specificity of 0.88 and sensitivity of 0.87. The external testing dataset showed a total accuracy of 79.3% with specificity of 0.83 and sensitivity of 0.67. In addition, in 54 COVID-19 images that first two nucleic acid test results were negative, 46 were predicted as COVID-19 positive by the algorithm, with the accuracy of 85.2%. Our study represents the first study to apply artificial intelligence to CT images for effectively screening for COVID-19.
Licença
cc_no
Texto completo: Disponível Coleções: Preprints Base de dados: medRxiv Tipo de estudo: Estudo diagnóstico / Estudo observacional / Estudo prognóstico Idioma: Inglês Ano de publicação: 2020 Tipo de documento: Preprint
Texto completo: Disponível Coleções: Preprints Base de dados: medRxiv Tipo de estudo: Estudo diagnóstico / Estudo observacional / Estudo prognóstico Idioma: Inglês Ano de publicação: 2020 Tipo de documento: Preprint
...