Este artigo é um Preprint
Preprints são relatos preliminares de pesquisa que não foram certificados pela revisão por pares. Eles não devem ser considerados para orientar a prática clínica ou comportamentos relacionados à saúde e não devem ser publicados na mídia como informação estabelecida.
Preprints publicados online permitem que os autores recebam feedback rápido, e toda a comunidade científica pode avaliar o trabalho independentemente e responder adequadamente. Estes comentários são publicados juntamente com os preprints para qualquer pessoa ler e servir como uma avaliação pós-publicação.
Predicting COVID-19 Incidences from Patients Viral Load using Deep-Learning
Preprint
em En
| PREPRINT-MEDRXIV
| ID: ppmedrxiv-21262064
ABSTRACT
The transmission of the contagious COVID-19 is known to be highly dependent on individual viral dynamics. Since the cycle threshold (Ct) is the only semi-quantitative viral measurement that could reflect infectivity, we utilized Ct values to forecast COVID-19 incidences. Our COVID-19 cohort (n=9531), retrieved from a single representative cross-sectional virology test center in Lebanon, revealed that low daily mean Ct values are followed by an increase in the number of national positive COVID-19 cases. A subset of the data was used to develop a deep neural network model, tune its hyperparameters, and optimize the weights for minimal mean square error of prediction. The final models accuracy is reported by comparing its predictions with an unseen dataset. Our model was the first to capture the interaction of the previously reported Ct values with the upcoming number of COVID-19 cases and any temporal effects that arise from population dynamics. Our model was deployed as a publicly available and easy-to-use estimator to facilitate prospective validation. Our model has potential application in predicting COVID-19 incidences in other countries and in assessing post-vaccination policies. Aside from emphasizing patient responsibility in adopting early testing practices, this study proposed and validated viral load measurement as a rigid input that can enhance outcomes and precision of viral disease predicting models.
cc_by_nd
Texto completo:
1
Coleções:
09-preprints
Base de dados:
PREPRINT-MEDRXIV
Tipo de estudo:
Cohort_studies
/
Observational_studies
/
Prognostic_studies
/
Rct
Idioma:
En
Ano de publicação:
2021
Tipo de documento:
Preprint