Your browser doesn't support javascript.
loading
Hyperbaric oxygen promotes the migration and differentiation of endogenous neural stem cells in neonatal rats with hypoxic-ischemic brain damage / 中国当代儿科杂志
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-304597
Biblioteca responsável: WPRO
ABSTRACT
<p><b>OBJECTIVE</b>To explore the effects of hyperbaric oxygen (HBO) treatment on the migration and differentiation of endogenous neural stem cells (NSCs) in neonatal rats with hypoxic-ischemic brain damage (HIBD).</p><p><b>METHODS</b>Seven-day-old Sprague-Dawley rats were randomly divided into the normal control (CON), the HIBD model and the HBO groups (HBO treatment was administered at 2 ATA, once daily for 7 days within 3 hrs after HIBD). HIBD model was prepared according to the classic Rice-Vannucci method. BrdU/DCX, BrdU/beta-tubulin, BrdU/GFAP and BrdU/O4 immunofluorescence were examined by confocal microscopy in the subventricular zone (SVZ) and the cortex 7, 14 and 28 days after HBO treatment.</p><p><b>RESULTS</b>The BrdU(+)DCX(+) cells in the SVZ (84 +/- 21 cells/mm2) in the HBO group were significantly higher than those in the CON group (39 +/- 14 cells/mm2) (p<0.05) and the HIBD model group (68 +/- 17 cells/mm2) (p<0.05) 7 days after HBO treatment. Fourteen days after HBO treatment, the BrdU(+) DCX(+) cells decreased in the SVZ and more cells were observed in the cortex in the HBO group as compared with the CON group (p<0.01). The BrdU(+) beta-tubulin(+), BrdU(+)GFAP(+) and BrdU(+) O4(+) cells were observed in the cortex, and more BrdU(+)beta-tubulin(+) and BrdU(+) O4(+) cells were observed in the HBO group as compared with the CON and the HIBD model groups (p<0.05) 28 days after HBO treatment.</p><p><b>CONCLUSIONS</b>HBO treatment may promote endogenous NSCs to migrate to the cortex and differentiate into mature neurocytes in neonatal rats with HIBD.</p>
Assuntos
Texto completo: Disponível Base de dados: WPRIM (Pacífico Ocidental) Assunto principal: Patologia / Fisiologia / Terapêutica / Bromodesoxiuridina / Diferenciação Celular / Movimento Celular / Córtex Cerebral / Ratos Sprague-Dawley / Hipóxia-Isquemia Encefálica / Biologia Celular Limite: Animais Idioma: Chinês Revista: Chinese Journal of Contemporary Pediatrics Ano de publicação: 2009 Tipo de documento: Artigo
Texto completo: Disponível Base de dados: WPRIM (Pacífico Ocidental) Assunto principal: Patologia / Fisiologia / Terapêutica / Bromodesoxiuridina / Diferenciação Celular / Movimento Celular / Córtex Cerebral / Ratos Sprague-Dawley / Hipóxia-Isquemia Encefálica / Biologia Celular Limite: Animais Idioma: Chinês Revista: Chinese Journal of Contemporary Pediatrics Ano de publicação: 2009 Tipo de documento: Artigo
...