Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Asian Pacific Journal of Tropical Biomedicine ; (12): 18-22, 2020.
Article in Chinese | WPRIM | ID: wpr-823912

ABSTRACT

Objective: To investigate the molecular mechanisms of the anti-obese effect of raspberry ketone against high-fat diet fed rats. Methods: Fifty adult male rats were randomly assigned to receive a standard diet, a high fat diet, and the high-fat diet and 0.5%, 1%or 2% raspberry ketone. Body weight, biochemical parameters and gene expression of CCAAT enhancer-binding protein (C/EBP)-δ, fatty acid synthase (FAS), acetyl CoA carboxylase (ACC), peroxisome proliferator-activated receptor alpha (PPAR-α), hormone-sensitive lipase (HSL) and hepatic carnitine palmitoyltransferase 1 A (CPT1A) were investigated. Results: Body weight, blood glucose, insulin, total lipids, triacylglycerols, total cholesterol and low-density lipoprotein cholesterol were increased in high-fat diet fed rats. These high fat diet-induced changes were attenuated by treatment with raspberry ketone. High-density lipoprotein cholesterol was decreased in high-fat diet fed rats but increased in rats treated with raspberry ketone. Molecular investigations showed induction of gene expression of C/EBP-δ, FAS, ACC, CPT1A and inhibition of gene expression of PPAR-α and HSL in high-fat diet fed rats as compared with control. Raspberry ketone treament reversed these changes except CPT1A. Conclusions: Raspberry ketone can prevent obesity induced by a high-fat diet in rats by induction of the expression of enzymes, controlling lipolysis and fatty acids β oxidation as well as inhibition of gene expressions of adipogenic factors.

2.
Asian Pacific Journal of Tropical Biomedicine ; (12): 832-834, 2015.
Article in Chinese | WPRIM | ID: wpr-672647

ABSTRACT

Objective:To test the ability of both zinc oxide nanoparticles (ZnONPs) and silver nanoparticles (SNPs) to ameliorate the oxidative stress resulted from diabetes in diabetic rats. Methods: Fifty male albino rats were used; ten of them were served as control group and forty, as the experiment group, were injected with streptozotocin at the single intraperitoneal dose of 100 mg/kg. Then, the experiment group was subdivided into, diabetic, diabetic +ZnONPs, diabetic +SNPs and diabetic + insulin groups. The activities and mRNA expression levels of superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase were determined in brain tissues. Malondialdehyde, total antioxidant capacity, zinc and silver concentrations were estimated in the brain tissues of all rats. Results:A significant increase in the activities and mRNA expression levels of superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase was shown. Malondialdehyde levels were significantly decreased while there was a significant increase in the zinc, silver concentrations and total antioxidant capacity in brain ofZnONPs andSNPs treated rats, compared with diabetic or diabetic + insulin group and their control group. Conclusions:ZnONPs andSNPs can be used to ameliorate the oxidative stress in brain resulted from diabetes mellitus.

SELECTION OF CITATIONS
SEARCH DETAIL