Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Acta cir. bras ; 31(8): 520-526, Aug. 2016. tab, graf
Article in English | LILACS | ID: lil-792414

ABSTRACT

ABSTRACT PURPOSE: To evaluated the long-term effect of scopolamine and sesame oil on spatial memory. METHODS: Memory impairment induced by Intracerebroventricular (ICV) injection of scopolamine hydrochloride (10 μg/ rat). Animals were gavaged for 4 weeks with saline, sesame oil (0.5, 1, or 2 mL/kg/day), or 3 weeks with memantine (30 mg/kg/day) in advance to induction of amnesia. Morris water maze (MWM) test was conducted 6 days after microinjection of scopolamine. Then, blood and brain samples were collected and evaluated for the malondialdehyde (MDA) levels, superoxide dismutase (SOD) and glutathione peroxidase (GPX) activities, and total antioxidant status (TAS) and ferric reducing ability of plasma (FRAP). RESULTS: Scopolamine significantly decreased traveled distance and time spent in target quadrant in probe test. Pretreatment of rats with sesame oil (0.5 mg/kg) mitigated scopolamine-induced behavioral alterations. Measurement of MDA, SOD, and GPX in brain tissue, and FRAP and TAS in blood showed little changes in animals which had received scopolamine or sesame oil. CONCLUSIONS: Intracerebroventricular injection of scopolamine has a residual effect on memory after six days. Sesame oil has an improving effect on spatial memory; however this effect is possibly mediated by mechanisms other than antioxidant effect of sesame oil.


Subject(s)
Animals , Male , Rats , Scopolamine/adverse effects , Sesame Oil/administration & dosage , Amnesia/drug therapy , Adjuvants, Anesthesia/adverse effects , Antioxidants/administration & dosage , Superoxide Dismutase/chemistry , Ferric Compounds/chemistry , Rats, Wistar , Oxidative Stress/drug effects , Maze Learning , Disease Models, Animal , Alzheimer Disease/prevention & control , Glutathione Peroxidase/chemistry , Amnesia/chemically induced , Injections, Intraventricular , Memory/drug effects , Antioxidants/chemistry
2.
Acta cir. bras ; 30(11): 736-742, Nov. 2015. graf
Article in English | LILACS | ID: lil-767603

ABSTRACT

PURPOSE: To evaluate the effects of PHA-543613 (α7-nAChR agonist) and galantamine (acetylcholinesterase inhibitor (AChEI)) on recognition memory and neurovascular coupling (NVC) response in beta-amyloid (Aβ) 25-35-treated mice. METHODS: PHA-543613 (1 mg/kg, i.p.), and galantamine (3 mg/kg, s.c.), effects were tested in Aβ25-35 mice model of AD. α7-nAChR antagonist, methyllycaconitine (MLA) (1 mg/kg, i.p.), was used for evaluation of receptor blockade effects. Recognition memory in animals was assessed by the novel object recognition (NOR) task. NVC response was analyzed by laser-doppler flow meter in barrel cortex by whisker stimulation method. RESULTS: Both, PHA-543613 and galantamine improve recognition memory in Aβ-treated animals. However, the advantageous effects of PHA-543613 were significantly higher than galantamine. Also, pretreatment with MLA reversed both galantamine and PHA-543613 effects on NOR. Impaired NVC response in AD animals was improved by PHA-543613 and galantamine. However, MLA pretreatment disrupts this function. CONCLUSION: Activation of α7-nAChR improved recognition memory possible through enhancement of neurovascular response in Alzheimer's disease in animals.


Subject(s)
Animals , Male , Amyloid beta-Peptides , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cholinesterase Inhibitors/pharmacology , Galantamine/pharmacology , Memory Disorders/drug therapy , Neurovascular Coupling/drug effects , Peptide Fragments , Quinuclidines/pharmacology , /metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/physiopathology , Disease Models, Animal , Laser-Doppler Flowmetry , Mice, Inbred BALB C , Memory Disorders/physiopathology , Neuropsychological Tests , Neurovascular Coupling/physiology , Reproducibility of Results , Recognition, Psychology/drug effects , Time Factors , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL