Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Indian J Exp Biol ; 2006 May; 44(5): 392-8
Article in English | IMSEAR | ID: sea-61313

ABSTRACT

A monosodium glutamate (MSG) biosensor with immobilized L-glutamate oxidase (L-GLOD) has been developed and studied for analysis of MSG in sauces, soup etc. The immobilized enzymatic membrane was attached with oxygen electrode with a push cap system. The detection limit of the sensor was 1 mg/dl and the standard curve was found to be linear upto 20 mg/dl. Response time of the sensor was 2 min. Cross-linking with glutaraldehyde in presence of Bovine Serum Albumin (BSA) as a spacer molecule has been used for immobilization. Optimization of the sensor was done with an increase in L-GLOD concentration (6.3-31.5 IU) and also with increase in loading volume of enzyme solution (5-20 microl). Optimization of pH and temperature was also studied. The permeability of O2 through different membrane was studied with and without immobilized L-GLOD. The enzymatic membrane was used for over 20 measurements and stability of the membrane was observed.


Subject(s)
Amino Acid Oxidoreductases/chemistry , Biosensing Techniques , Enzymes, Immobilized/chemistry , Food Analysis , Sodium Glutamate/analysis
2.
Indian J Exp Biol ; 2005 Jul; 43(7): 646-53
Article in English | IMSEAR | ID: sea-58028

ABSTRACT

A hypoxanthine (Hx) biosensor based on immobilized xanthine oxidase (XO) as the bio-component was developed and studied for the rapid analysis of fish (sweet water and marine) and goat meat samples. The biosensor was standardized for the determination of Hx in the range of 0.05 to 2 mM. Crosslinking with glutaraldehyde in presence of BSA as a spacer molecule was used for the method of immobilization. One layer of gelatin (10%) was applied over the immobilized enzyme layer to reduce the leaching out of enzyme from the membrane (cellulose acetate) matrix. The optimum pH of the immobilized system was determined to be 8.5 at 25 degrees C instead 7.0-7.2 for free enzyme system. Km and Vmax values were determined for the immobilized system. The developed sensor was applied to determine the amount of Hx present in fish and meat over a period of time. The stability of the enzyme immobilized membrane was also tested over a period of 30 days.


Subject(s)
Animals , Biosensing Techniques/methods , Cattle , Enzymes, Immobilized , Fishes , Food Analysis/methods , Hypoxanthine/analysis , Meat/analysis , Xanthine Oxidase
SELECTION OF CITATIONS
SEARCH DETAIL