Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Year range
1.
Biocell ; 19(3): 183-188, Dec. 1995.
Article in English | LILACS | ID: lil-336009

ABSTRACT

Rat brain tubulin in a proper buffered solution became insoluble in the presence of 10 mM NiCl2, and sedimented at centrifugal forces as low as 500 x g for 30 min. Both nickel-sedimented and microtubular tubulin conserved 65 of colchicine binding activity after 25 days of storage at -20 degrees C. However in brain cytosol, only 9 of the initial binding activity was conserved. The electrophoretic mobility of tubulin recovered from aggregates also remained unaltered. Therefore the aggregates formed with Ni2+ share important physicochemical properties with microtubules.


Subject(s)
Animals , Male , Rats , Microtubules/chemistry , Nickel/pharmacology , Tubulin/chemistry , Centrifugation , Chemistry, Physical , Colchicine , Electrophoresis, Polyacrylamide Gel , Brain Chemistry , Solubility , Tubulin/metabolism
2.
Microsc. electron. biol. celular ; 14(2): 147-57, 1990.
Article in English | LILACS | ID: lil-121628

ABSTRACT

The fact that glycerol preserves microtubules from depolymerizing in vitro, and that some ions such as Ca(II) and Mg(II), regulate the assembly-disassembly process of these structures, induced us to study the effect of several sugars, glycols and metal ions on solubility and colchicine affinity of tubulin in rat brain homogenates, and of purified microtubular protein. Inhibition of colchicine binding was significant with glycerol, polyethylene glycol 1000 (PEG-2) and the ions A1(III), Co(II), Ni(II), while compounds structurally related to glycero (glucose and sucrose) did not inhibition it. Mannitol, instead, increased the activity a 47% over control. Apparently the presence of some compounds in brain homogenates [PEG-2 (1000) and NI (II)] favored tubulin sedimentation when these latterwere centrifuged at 100,000 x g for 150 min at 20 degrees C, but the form in which tubulin becomes aggregated in the pellet is unknown. Nickel ion madeinsoluble microtubular protein of homogenates and the purified one by more than 90% without causing significant inhibition of the colchicine binding. The sediment containing nickel-treated two cycles purified microtubular protein observed with the electron microscope did not present microtubules, but it revealed the presence of irregular, wavy and streteched structures, but it revealed the presence of irregular, wavy and stretched structures bearing highly dense dotted material. The sediments became soluble in phosphate-glutamate buffer (pH 6.8) and, when incubated in polymerizing conditions, gave rise to microtubules undistinguishable from those prepared with untreated purified protein


Subject(s)
Animals , Female , Rats , Carbohydrates/pharmacology , Cations/pharmacology , Colchicine/metabolism , Glycols/pharmacology , Nickel/pharmacology , Brain Chemistry , Tubulina/metabolism , Aluminum/pharmacology , Chemical Precipitation , Cobalt/pharmacology , Fixatives/pharmacology , Protein Binding , Microtubules , Polymers , Nerve Tissue Proteins/metabolism , Solubility
4.
Acta gastroenterol. latinoam ; 12(3): 237-9, 1982.
Article in Spanish | LILACS | ID: lil-8549

ABSTRACT

Se determino la actividad de la obra glucoronidasa hepatica en 15 pacientes con litiasis pigmentaria y en 8 personas normales. No se encontro ninguna diferencia estadisticamente significantiva entre ambos grupos


Subject(s)
Adult , Middle Aged , Humans , Cholelithiasis , Glucuronidase , Liver
SELECTION OF CITATIONS
SEARCH DETAIL