Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Arch. endocrinol. metab. (Online) ; 63(3): 228-234, May-June 2019. tab, graf
Article in English | LILACS | ID: biblio-1011164

ABSTRACT

ABSTRACT Objective Hyperthyroidism causes many injuries in its target organs and the consequences are reflected systemically. As systemic alterations in hyperthyroidism at earlier stages have received partial attention, this study aimed to investigate systemic redox and inflammatory status at an early stage of T4-induced hyperthyroidism. Materials and methods Male Wistar rats were assigned to control and hyperthyroid groups (n = 7/group). The hyperthyroid group received L-thyroxine (12 mg/L) in their drinking water for 14 days whereas control group received only the vehicle. Body weight was measured on the 1st and 14th day of the protocol. On the 14th day, animals were anaesthetized. Blood was then collected from the retro-orbital venous plexus and then the animals were euthanised. The blood was separated into plasma and erythrocytes. Plasma was used to measure ROS levels, sulfhydryl compounds, IL-10, TNF-α and LDH levels; erythrocytes were used for the analysis of thioredoxin reductase activity, glutaredoxin content, and pentose cycle enzymes (total G6PD, G6PD and 6PGD). Results Hyperthyroid animals presented body weight gain and final body weight reduction, which was associated with increased ROS levels and decreased sulfhydryl content in plasma. Thioredoxin reductase activity, glutaredoxin content, and pentose cycle enzymes levels in erythrocytes, as well as IL-10, TNF-α and LDH plasma levels were unaltered. Conclusion Taken together, our results suggest an impairment in corporal mass associated with systemic oxidative stress at this stage of hyperthyroidism. Meanwhile, the pentose cycle was not influenced and systemic inflammation and tissue damage seem to be absent at this stage of hyperthyroidism.


Subject(s)
Animals , Male , Rats , Oxidative Stress/drug effects , Erythrocytes/metabolism , Hyperthyroidism/metabolism , Oxidation-Reduction , Pentoses , Thyroxine , Rats, Wistar , Disease Models, Animal , Erythrocytes/drug effects , Hyperthyroidism/blood , Antioxidants/metabolism
2.
Rev. bras. cir. cardiovasc ; 31(6): 428-433, Nov.-Dec. 2016. tab, graf
Article in English | LILACS | ID: biblio-843447

ABSTRACT

Abstract Introduction: Oxidative stress seems to be a role in the atherosclerosis process, but research in human beings is scarce. Objective: To evaluate the role of oxidative stress on human aortas of patients submitted to surgical treatment for advanced aortoiliac occlusive disease. Methods: Twenty-six patients were divided into three groups: control group (n=10) formed by cadaveric organ donors; severe aortoiliac stenosis group (patients with severe aortoiliac stenosis; n=9); and total aortoiliac occlusion group (patients with chronic total aortoiliac occlusion; n=7). We evaluated the reactive oxygen species concentration, nicotinamide adenine dinucleotide phosphate-oxidase, superoxide dismutase and catalase activities as well as nitrite levels in samples of aortas harvested during aortofemoral bypass for treatment of advanced aortoiliac occlusive disease. Results: We observed a higher level of reactive oxygen species in total aortoiliac occlusion group (48.3±9.56 pmol/mg protein) when compared to severe aortoiliac stenosis (33.5±7.4 pmol/mg protein) and control (4.91±0.8 pmol/mg protein) groups (P<0.05). Nicotinamide adenine dinucleotide phosphate oxidase activity was also higher in total aortoiliac occlusion group when compared to the control group (3.81±1.7 versus 1.05±0.31 µmol/min.mg protein; P<0.05). Furthermore, superoxide dismutase and catalase activities were significantly higher in the severe aortoiliac stenosis and total aortoiliac occlusion groups when compared to the control cases (P<0.05). Nitrite concentration was smaller in the severe aortoiliac stenosis group in comparing to the other groups. Conclusion: Our results indicated an increase of reactive oxygen species levels and nicotinamide adenine dinucleotide phosphate-oxidase activity in human aortic samples of patients with advanced aortoiliac occlusive disease. The increase of antioxidant enzymes activities may be due to a compensative phenomenon to reactive oxygen species production mediated by nicotinamide adenine dinucleotide phosphate oxidase. This preliminary study offers us a more comprehensive knowledge about the role of oxidative stress in advanced aortoiliac occlusive disease in human beings.


Subject(s)
Humans , Male , Female , Adult , Middle Aged , Young Adult , Aortic Diseases/surgery , Arterial Occlusive Diseases/surgery , Oxidative Stress , Iliac Artery/surgery , Aortic Diseases/enzymology , Arterial Occlusive Diseases/enzymology , Superoxide Dismutase/analysis , Severity of Illness Index , Catalase/analysis , Case-Control Studies , NADP/analysis
3.
Acta cir. bras ; 31(8): 564-568, Aug. 2016. tab, graf
Article in English | LILACS | ID: lil-792407

ABSTRACT

ABSTRACT PURPOSE: To evaluated the role of oxidative stress on aging process in patients submitted to carotid endarterectomy. METHODS: Twenty patients were divided into two groups: older group (≥ 70 years old); and the younger group (< 70 years old). We evaluated the reactive oxygen species (ROS) concentration, nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase, superoxide dismutase (SOD) and catalase (CAT) activities as so as nitrite levels in fragments of carotid arteries harvested during carotid endarterectomy for treatment of high grade carotid stenosis. RESULTS: We observed a higher levels of ROS and NADPH oxidase activity in the older group (p<0.05). Furthermore, the nitrite concentration was lower in the older group (14.55 ± 5.61 x 10-3 versus 26.42 ± 8.14 x 10-3 µM; p=0.0123). However, the activities of antioxidant enzymes (CAT and SOD) were similar in both the groups. CONCLUSIONS : Arterial aging is associated with increased concentrations of oxygen species and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity as so as nitrite reduction in human carotid artery specimens. Maybe therapies that block NADPH oxidase activity and enhance nitrite stores would be a good strategy to reduce the effect of oxidative stress in arterial aging.


Subject(s)
Humans , Male , Female , Middle Aged , Aged , Aged, 80 and over , Aging/physiology , Carotid Arteries/physiology , Endarterectomy, Carotid , Oxidative Stress/physiology , Superoxide Dismutase/metabolism , Coronary Artery Disease/surgery , Carotid Arteries/enzymology , Catalase/metabolism , Reactive Oxygen Species/analysis , NADP/analysis
SELECTION OF CITATIONS
SEARCH DETAIL