Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
1.
Journal of Cancer Prevention ; : 107-107, 2018.
Article in English | WPRIM | ID: wpr-740096

ABSTRACT

The original version of this article contained error in the URL of the SUPPLEMENTARY MATERIALS.

2.
Journal of Cancer Prevention ; : 1-9, 2018.
Article in English | WPRIM | ID: wpr-740095

ABSTRACT

BACKGROUND: Smad3 linker phosphorylation plays essential roles in tumor progression and metastasis. We have previously reported that the mutation of Smad3 linker phosphorylation sites (Smad3-Erk/Pro-directed kinase site mutant constructs [EPSM]) markedly reduced the tumor progression while increasing the lung metastasis in breast cancer. METHODS: We performed high-throughput RNA-Sequencing of the human prostate cancer cell lines infected with adenoviral Smad3-EPSM to identify the genes regulated by Smad3-EPSM. RESULTS: In this study, we identified genes which are differentially regulated in the presence of Smad3-EPSM. We first confirmed that Smad3-EPSM strongly enhanced a capability of cell motility and invasiveness as well as the expression of epithelial-mesenchymal transition marker genes, CDH2, SNAI1, and ZEB1 in response to TGF-β1 in human pancreatic and prostate cancer cell lines. We identified GADD45B, CTGF, and JUNB genes in the expression profiles associated with cell motility and invasiveness induced by the Smad3-EPSM. CONCLUSIONS: These results suggested that inhibition of Smad3 linker phosphorylation may enhance cell motility and invasiveness by inducing expression of GADD45B, CTGF, and JUNB genes in various cancers.


Subject(s)
Humans , Breast Neoplasms , Cell Line , Cell Movement , Epithelial-Mesenchymal Transition , Lung , Neoplasm Metastasis , Pancreatic Neoplasms , Phosphorylation , Phosphotransferases , Prostatic Neoplasms , Sequence Analysis, RNA
3.
Genomics & Informatics ; : 145-152, 2012.
Article in English | WPRIM | ID: wpr-192771

ABSTRACT

Chromatin structure and dynamics that are influenced by epigenetic marks, such as histone modification and DNA methylation, play a crucial role in modulating gene transcription. To understand the relationship between histone modifications and regulatory elements in breast cancer cells, we compared our chromatin immunoprecipitation sequencing (ChIP-Seq) histone modification patterns for histone H3K4me1, H3K4me3, H3K9/16ac, and H3K27me3 in MCF-7 cells with publicly available formaldehyde-assisted isolation of regulatory elements (FAIRE)-chip signals in human chromosomes 8, 11, and 12, identified by a method called FAIRE. Active regulatory elements defined by FAIRE were highly associated with active histone modifications, like H3K4me3 and H3K9/16ac, especially near transcription start sites. The H3K9/16ac-enriched genes that overlapped with FAIRE signals (FAIRE-H3K9/14ac) were moderately correlated with gene expression levels. We also identified functional sequence motifs at H3K4me1-enriched FAIRE sites upstream of putative promoters, suggesting that regulatory elements could be associated with H3K4me1 to be regarded as distal regulatory elements. Our results might provide an insight into epigenetic regulatory mechanisms explaining the association of histone modifications with open chromatin structure in breast cancer cells.


Subject(s)
Humans , Breast , Breast Neoplasms , Chromatin , Chromatin Immunoprecipitation , Chromosomes, Human , DNA Methylation , Epigenomics , Gene Expression , Histones , MCF-7 Cells , Transcription Initiation Site
4.
Genomics & Informatics ; : 189-193, 2011.
Article in English | WPRIM | ID: wpr-73130

ABSTRACT

Simple sequence repeats (SSRs) are ubiquitous short tandem duplications found within eukaryotic genomes. Their length variability and abundance throughout the genome has led them to be widely used as molecular markers for crop-breeding programs, facilitating the use of marker-assisted selection as well as estimation of genetic population structure. Here, we report a software application, "SSR-Primer Generator" for SSR discovery, SSR-primer design, and homology-based search of in silico amplicons from a DNA sequence dataset. On submission of multiple FASTA-format DNA sequences, those analyses are batch processed in a Java runtime environment (JRE) platform, in a pipeline, and the resulting data are visualized in HTML tabular format. This application will be a useful tool for reducing the time and costs associated with the development and application of SSR markers.


Subject(s)
Base Sequence , Computer Simulation , Genome , Indonesia , Microsatellite Repeats , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL