Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Journal of Zhejiang University. Medical sciences ; (6): 249-259, 2023.
Article in English | WPRIM | ID: wpr-982042

ABSTRACT

Interleukin (IL)-36 is a family of cytokines that belongs to the larger IL-1 superfamily. IL-36 agonist/antagonist binds to the interleukin-36 receptor involving in physiological inflammation regulation and pathogenesis of many inflammatory diseases. In inflammatory joint diseases, the expression of IL-36 changes, and some studies have initially explored the role of IL-36 in these diseases. In psoriatic arthritis, IL-36 signal mediates plasma cell and fibroblast-like synoviocyte crosstalk presenting IL-36 agonist/antagonist imbalance. In rheumatoid arthritis, IL-36 agonists induce fibroblast-like synoviocyte to produce pro-inflammatory factors, while IL-36 antagonist deficiency leads to lesion progression. In osteoarthritis, IL-36 agonists induce chondrocytes to produce catabolic enzymes and pro-inflammatory factors. This article reviews the expression and function of IL-36 in different inflammatory joint diseases to provide a reference for revealing their pathogenic mechanisms and discovering therapeutic targets.


Subject(s)
Humans , Interleukins , Arthritis, Rheumatoid , Osteoarthritis/pathology , Arthritis, Psoriatic/metabolism , Cytokines
2.
Journal of Zhejiang University. Medical sciences ; (6): 212-221, 2021.
Article in English | WPRIM | ID: wpr-879964

ABSTRACT

Temporomandibular joint osteoarthritis (TMJOA) is mainly manifested as perforation of temporomandibular joint disc (TMJD) and destruction of condylar osteochondral complex (COCC). In recent years, tissue engineering technology has become one of the effective strategies in repairing this damage. With the development of scaffold material technology, composite scaffolds have become an important means to optimize the performance of scaffolds with the combined advantages of natural materials and synthetic materials. The gelling method with the minimally invasive concept can greatly solve the problems of surgical trauma and material anastomosis, which is beneficial to the clinical transformation of temporomandibular joint tissue engineering. Extracellular matrix scaffolds technology can solve the problem of scaffold source and maximize the simulation of the extracellular environment, which provides an important means for the transformation of temporo joint tissue engineering to animal level. Due to the limitation of the source and amplification of costal chondrocytes, the use of mesenchymal stem cells from different sources has been widely used for temporomandibular joint tissue engineering. The fibrochondral stem cells isolated from surface layer of articular cartilage may provide one more suitable cell source. Transforming growth factor β superfamily, due to its osteochondrogenesis activity has been widely used in tissue engineering, and platelet-rich derivative as a convenient preparation of compound biological factor, gradually get used in temporomandibular joint tissue engineering. With the deepening of research on extracellular microenvironment and mechanical stimulation, mesenchymal stem cells, exosomes and stress stimulation are increasingly being used to regulate the extracellular microenvironment. In the future, the combination of complex bioactive factors and certain stress stimulation may become a trend in the temporomandibular joint tissue engineering research. In this article, the progress on tissue engineering in repairing COCC and TMJD, especially in scaffold materials, seed cells and bioactive factors, are reviewed, so as to provide information for future research design and clinical intervention.


Subject(s)
Animals , Mesenchymal Stem Cells , Temporomandibular Joint/surgery , Temporomandibular Joint Disc/surgery , Tissue Engineering , Tissue Scaffolds
SELECTION OF CITATIONS
SEARCH DETAIL