Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
International Journal of Oral Science ; (4): 3-3, 2018.
Article in English | WPRIM | ID: wpr-772312

ABSTRACT

The bone remodeling process in response to orthodontic forces requires the activity of osteoclasts to allow teeth to move in the direction of the force applied. Receptor activator of nuclear factor-κB ligand (RANKL) is essential for this process although its cellular source in response to orthodontic forces has not been determined. Orthodontic tooth movement is considered to be an aseptic inflammatory process that is stimulated by leukocytes including T and B lymphocytes which are presumed to stimulate bone resorption. We determined whether periodontal ligament and bone lining cells were an essential source of RANKL by tamoxifen induced deletion of RANKL in which Cre recombinase was driven by a 3.2 kb reporter element of the Col1α1 gene in experimental mice (Col1α1.CreER.RANKL) and compared results with littermate controls (Col1α1.CreER.RANKL). By examination of Col1α1.CreER.ROSA26 reporter mice we showed tissue specificity of tamoxifen induced Cre recombinase predominantly in the periodontal ligament and bone lining cells. Surprisingly we found that most of the orthodontic tooth movement and formation of osteoclasts was blocked in the experimental mice, which also had a reduced periodontal ligament space. Thus, we demonstrate for the first time that RANKL produced by periodontal ligament and bone lining cells provide the major driving force for tooth movement and osteoclastogenesis in response to orthodontic forces.


Subject(s)
Animals , Mice , Bone Remodeling , Physiology , Mice, Transgenic , Osteoclasts , Physiology , Periodontal Ligament , Metabolism , RANK Ligand , Metabolism , Tamoxifen , Pharmacology , Tooth Movement Techniques
2.
International Journal of Oral Science ; (4): 63-72, 2015.
Article in English | WPRIM | ID: wpr-290160

ABSTRACT

Diabetes mellitus and periodontal disease are chronic diseases affecting a large number of populations worldwide. Changed bone metabolism is one of the important long-term complications associated with diabetes mellitus. Alveolar bone loss is one of the main outcomes of periodontitis, and diabetes is among the primary risk factors for periodontal disease. In this review, we summarise the adverse effects of diabetes on the periodontium in periodontitis subjects, focusing on alveolar bone loss. Bone remodelling begins with osteoclasts resorbing bone, followed by new bone formation by osteoblasts in the resorption lacunae. Therefore, we discuss the potential mechanism of diabetes-enhanced bone loss in relation to osteoblasts and osteoclasts.


Subject(s)
Humans , Bone Diseases , Metabolism , Diabetes Mellitus, Type 1 , Metabolism , Diabetes Mellitus, Type 2 , Metabolism , Periodontal Diseases
SELECTION OF CITATIONS
SEARCH DETAIL