Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Article in English | WPRIM | ID: wpr-154745

ABSTRACT

BACKGROUND AND PURPOSE: Dravet syndrome is a rare and severe type of epilepsy in infants. The heterogeneity in the overall intellectual disability that these patients suffer from has been attributed to differences in genetic background and epilepsy severity. METHODS: Eighteen Vietnamese children diagnosed with Dravet syndrome were included in this study. SCN1A variants were screened by direct sequencing and multiplex ligation-dependent probe amplification. Adaptive functioning was assessed in all patients using the Vietnamese version of the Vineland Adaptive Behavior Scales, and the results were analyzed relative to the SCN1A variants and epilepsy severity. RESULTS: We identified 13 pathogenic or likely pathogenic variants, including 6 that have not been reported previously. We found no correlations between the presence or type of SCN1A variants and the level of adaptive functioning impairment or severity of epilepsy. Only two of nine patients aged at least 5 years had an adaptive functioning score higher than 50. Both of these patients had a low frequency of convulsive seizures and no history of status epilepticus or prolonged seizures. The remaining seven had very low adaptive functioning scores (39 or less) despite the variability in the severity of their epilepsy confirming the involvement of factors other than the severity of epilepsy in determining the developmental outcome. CONCLUSIONS: Our study expands the spectrum of known SCN1A variants and confirms the current understanding of the role of the genetic background and epilepsy severity in determining the developmental outcome of Dravet syndrome patients.


Subject(s)
Child , Humans , Infant , Adaptation, Psychological , Asian People , Epilepsies, Myoclonic , Epilepsy , Genetic Background , Intellectual Disability , Multiplex Polymerase Chain Reaction , Population Characteristics , Seizures , Status Epilepticus , Weights and Measures
2.
Article in English | WPRIM | ID: wpr-727358

ABSTRACT

Zinc has been considered as a vital constituent of proteins, including enzymes. Mobile reactive zinc (Zn2+) is the key form of zinc involved in signal transductions, which are mainly driven by its binding to proteins or the release of zinc from proteins, possibly via a redox switch. There has been growing evidence of zinc's critical role in cell signaling, due to its flexible coordination geometry and rapid shifts in protein conformation to perform biological reactions. The importance and complexity of Zn2+ activity has been presumed to parallel the degree of calcium's participation in cellular processes. Whole body and cellular Zn2+ levels are largely regulated by metallothioneins (MTs), Zn2+ importers (ZIPs), and Zn2+ transporters (ZnTs). Numerous proteins involved in signaling pathways, mitochondrial metabolism, and ion channels that play a pivotal role in controlling cardiac contractility are common targets of Zn2+. However, these regulatory actions of Zn2+ are not limited to the function of the heart, but also extend to numerous other organ systems, such as the central nervous system, immune system, cardiovascular tissue, and secretory glands, such as the pancreas, prostate, and mammary glands. In this review, the regulation of cellular Zn2+ levels, Zn2+-mediated signal transduction, impacts of Zn2+ on ion channels and mitochondrial metabolism, and finally, the implications of Zn2+ in health and disease development were outlined to help widen the current understanding of the versatile and complex roles of Zn2+.


Subject(s)
Central Nervous System , Heart , Immune System , Ion Channels , Mammary Glands, Human , Metabolism , Metallothionein , Oxidation-Reduction , Pancreas , Prostate , Protein Conformation , Signal Transduction , Zinc
SELECTION OF CITATIONS
SEARCH DETAIL