Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Chinese Journal of Biotechnology ; (12): 874-910, 2021.
Article in Chinese | WPRIM | ID: wpr-878602

ABSTRACT

The development and implement of microbial chassis cells can provide excellent cell factories for diverse industrial applications, which help achieve the goal of environmental protection and sustainable bioeconomy. The synthetic biology strategy of Design-Build-Test-Learn (DBTL) plays a crucial role on rational and/or semi-rational construction or modification of chassis cells to achieve the goals of "Building to Understand" and "Building for Applications". In this review, we briefly comment on the technical development of the DBTL cycle and the research progress of a few model microorganisms. We mainly focuse on non-model bacterial cell factories with potential industrial applications, which possess unique physiological and biochemical characteristics, capabilities of utilizing one-carbon compounds or of producing platform compounds efficiently. We also propose strategies for the efficient and effective construction and application of synthetic microbial cell factories securely in the synthetic biology era, which are to discover and integrate the advantages of model and non-model industrial microorganisms, to develop and deploy intelligent automated equipment for cost-effective high-throughput screening and characterization of chassis cells as well as big-data platforms for storing, retrieving, analyzing, simulating, integrating, and visualizing omics datasets at both molecular and phenotypic levels, so that we can build both high-quality digital cell models and optimized chassis cells to guide the rational design and construction of microbial cell factories for diverse industrial applications.


Subject(s)
Bacteria/genetics , Metabolic Engineering , Synthetic Biology
2.
Chinese Journal of Biotechnology ; (12): 4293-4302, 2021.
Article in Chinese | WPRIM | ID: wpr-921506

ABSTRACT

Acetic acid is a common inhibitor present in lignocellulosic hydrolysate. Development of acetic acid tolerant strains may improve the production of biofuels and bio-based chemicals using lignocellulosic biomass as raw materials. Current studies on stress tolerance of yeast Saccharomyces cerevisiae have mainly focused on transcription control, but the role of transfer RNA (tRNA) was rarely investigated. We found that some tRNA genes showed elevated transcription levels in a stress tolerant yeast strain. In this study, we further investigated the effects of overexpressing an arginine transfer RNA gene tR(ACG)D and a leucine transfer RNA gene tL(CAA)K on cell growth and ethanol production of S. cerevisiae BY4741 under acetic acid stress. The tL(CAA)K overexpression strain showed a better growth and a 29.41% higher ethanol productivity than that of the control strain. However, overexpression of tR(ACG)D showed negative influence on cell growth and ethanol production. Further studies revealed that the transcriptional levels of HAA1, MSN2, and MSN4, which encode transcription regulators related to stress tolerance, were up-regulated in tL(CAA)K overexpressed strain. This study provides an alternative strategy to develop robust yeast strains for cellulosic biorefinery, and also provides a basis for investigating how yeast stress tolerance is regulated by tRNA genes.


Subject(s)
Acetic Acid , DNA-Binding Proteins/metabolism , Fermentation , Leucine , RNA, Transfer/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factors
3.
Chinese Journal of Biotechnology ; (12): 81-90, 2019.
Article in Chinese | WPRIM | ID: wpr-771398

ABSTRACT

Trichoderma reesei Rut-C30 is widely used in industrial cellulase production, and development of cellulase hyper-producer is of great importance for economic lignocellulosic biorefinery. In this study, T. reesei Rut-C30 was engineered with an artificial zinc finger proteins (AZFPs) library. Two mutants T. reesei M1 and M2 with improved cellulase production were obtained. Compared to the parent strain, the filter paper activity (FPase) of T. reesei M1 and M2 increased 100% and 53%, respectively. In addition, the total amount of extracellular protein from the M1 mutant increased 69%, whereas the endo-β-glucanase (CMCase) activity of the M2 mutant is 64% higher compared to the parental strain. Furthermore, RT-qPCR analysis showed that the major cellulase genes exhibited significantly increased expression in both mutants, but different patterns were observed in the two mutants. On the other hand, the cellulase transcriptional repressor ace1 was down-regulated in both mutants, but the transcription level of the activator xyr1 was only up-regulated in the strain M1. These results demonstrated that different AZFPs exert diverse regulatory mechanisms on cellulase production in T. reesei. Analysis of the target genes of AZFPs from T. reesei M1 and M2 will not only benefit further exploration of the regulatory mechanisms of cellulase biosynthesis in T. reesei, but also enable development of cellulase hyper-producing strains by metabolic engineering.


Subject(s)
Cellulase , Gene Library , Transcription Factors , Trichoderma , Zinc Fingers
4.
Chinese Journal of Biotechnology ; (12): 749-758, 2019.
Article in Chinese | WPRIM | ID: wpr-771335

ABSTRACT

Filamentous fungi are one of the platforms for producing fermented products. The specific characteristic of their submerged fermentation is the aggregation of mycelia that is affected by environmental conditions, leading to significantly different rheology for fermentation broth. Such a rheological change not only affects the transfer of mass, heat and momentum, but also the biosynthesis of target products and the efficiency of their production. In this article, strategies for morphological regulation of filamentous fungi are reviewed, and the impact of calcium signal transduction and chitin biosynthesis on apical growth of hyphae and branching of mycelia for their aggregation are further commented.


Subject(s)
Fermentation , Fungi , Physiology , Hot Temperature , Mycelium , Metabolism , Rheology
5.
Chinese Journal of Biotechnology ; (12): 906-915, 2018.
Article in Chinese | WPRIM | ID: wpr-687726

ABSTRACT

By-products released from pretreatment process of lignocellulose seriously hinder the development of cellulosic fuel ethanol. Therefore, the great way to increase the efficiency of cellulosic ethanol production is improvement of Saccharomyces cerevisiae tolerance to these inhibitors. In this work, the effects of LCB4 gene overexpression on cell growth and ethanol fermentation in S. cerevisiae S288C under acetic acid, furfural and vanillin stresses were studied. Compared to the control strain S288C-HO, the recombinant strain S288C-LCB4 grew better on YPD solid medium containing 10 g/L acetic acid, 1.5 g/L furfural and 1 g/L vanillin. Ethanol yields of recombinant strain S288C-LCB4 were 0.85 g/(L·h), 0.76 g/(L·h) and 1.12 g/(L·h) when 10 g/L acetic acid, 3 g/L furfural and 2 g/L vanillin were supplemented into the fermentation medium respectively, which increased by 34.9%, 85.4% and 330.8% than the control strain S288C-HO. Meanwhile, ethanol fermentation time was reduced by 30 h and 44 h under furfural and vanillin stresses respectively. Further metabolites analysis in fermentation broth showed that the recombinant strain produced more protective compounds, such as glycerol, trehalose and succinic acid, than the control strain, which could be the reason for enhancing strain tolerance to these inhibitors from pretreatment process of lignocellulose. The results indicated that overexpression of LCB4 gene could significantly improve ethanol fermentation in S. cerevisiae S288C under acetic acid, furfural and vanillin stresses.

6.
Chinese Journal of Biotechnology ; (12): 923-935, 2017.
Article in Chinese | WPRIM | ID: wpr-242218

ABSTRACT

Kluyveromyces marxianus, as unconventional yeast, attracts more and more attention in the biofuel fermentation. Although this sort of yeasts can ferment pentose sugars, the fermentation capacity differs largely. Xylose and arabinose fermentation by three K. marxianus strains (K. m 9009, K. m 1911 and K. m 1727) were compared at different temperatures. The results showed that the fermentation performance of the three strains had significant difference under different fermentation temperatures. Especially, the sugar consumption rate and alcohol yield of K. m 9009 and K. m 1727 at 40 ℃ were better than 30 ℃. This results fully reflect the fermentation advantages of K. marxianus yeast under high-temperature. On this basis, five genes (XR, XDH, XK, AR and LAD) coding key metabolic enzymes in three different yeasts were amplified by PCR, and the sequence were compared by Clustalx 2.1. The results showed that the amino acid sequences coding key enzymes have similarity of over 98% with the reference sequences reported in the literature. Furthermore, the difference of amino acid was not at the key site of its enzyme, so the differences between three stains were not caused by the gene level, but by transcribed or translation regulation level. By real-time PCR experiment, we determined the gene expression levels of four key enzymes (XR, XDH, XK and ADH) in the xylose metabolism pathway of K. m 1727 and K. m 1911 at different fermentation time points. The results showed that, for thermotolerant yeast K. m 1727, the low expression level of XDH and XK genes was the main factors leading to accumulation of xylitol. In addition, according to the pathway of Zygosaccharomyces bailii, which have been reported in NCBI and KEGG, the xylose and arabinose metabolic pathways of K. marxianus were identified, which laid foundation for further improving the pentose fermentation ability by metabolic engineering.

7.
Chinese Journal of Biotechnology ; (12): 1481-1495, 2016.
Article in Chinese | WPRIM | ID: wpr-243706

ABSTRACT

Production of bioenergy and bio-based chemicals by using fermentable sugars released from low-cost renewable lignocellulosic biomass has received great attention. Efficient cellulolytic enzymes are crucial for lignocellulose bioconversion, but high cellulase production cost is limiting the bioconversion efficiency of cellulosic biomass and industrial applications of lignocellulose biorefinery. Studies on induction and regulation of cellulase in filamentous fungi will help to further develop superior fungal strains for efficient cellulase production and reduce cellulase production cost. With the advances in high-throughput sequencing and gene manipulation technology using fungal strains, an in-depth understanding of cellulase induction and regulation mechanisms of enzyme expression has been achieved. We reviewed recent progresses in the induction and regulation of cellulase expression in several model filamentous fungi, emphasizing sugar transporters, transcription factors and chromatin remodeling. Future prospects in application of artificial zinc finger proteins for cellulase induction and regulation in filamentous fungi were discussed.

8.
Chinese Journal of Biotechnology ; (12): 161-171, 2015.
Article in Chinese | WPRIM | ID: wpr-345517

ABSTRACT

Microalgae have been identified as promising candidates for biorefinery of value-added molecules. The valuable products from microalgae include polyunsaturated fatty acids and pigments, clean and sustainable energy (e.g. biodiesel). Nevertheless, high cost for microalgae biomass harvesting has restricted the industrial application of microalgae. Flocculation, compared with other microalgae harvesting methods, has distinguished itself as a promising method with low cost and easy operation. Here, we reviewed the methods of microalgae harvesting using flocculation, including chemical flocculation, physical flocculation and biological flocculation, and the progress and prospect in bio-flocculation are especially focused. Harvesting microalgae via bio-flocculation, especially using bio-flocculant and microalgal strains that is self-flocculated, is one of the eco-friendly, cost-effective and efficient microalgae harvesting methods.


Subject(s)
Biofuels , Biomass , Flocculation , Microalgae
9.
Chinese Journal of Biotechnology ; (12): 310-314, 2014.
Article in Chinese | WPRIM | ID: wpr-279519

ABSTRACT

Propionic acid, a major inhibitor to yeast cells, was accumulated during continuous ethanol fermentation from corn meal hydrolysate by the flocculating yeast under stillage backset conditions. Based on its inhibition mechanism in yeast cells, strategies were developed for alleviating this effect. Firstly, high temperature processes such as medium sterilization generated more propionic acid, which should be avoided. Propionic acid was reduced significantly during ethanol fermentation without medium sterilization, and concentrations of biomass and ethanol increased by 59.3% and 7.4%, respectively. Secondly, the running time of stillage backset should be controlled so that propionic acid accumulated would be lower than its half inhibition concentration IC50 (40 mmol/L). Finally, because low pH augmented propionic acid inhibition in yeast cells, a higher pH of 5.5 was validated to be suitable for ethanol fermentation under the stillage backset condition.


Subject(s)
Biomass , Ethanol , Metabolism , Fermentation , Flocculation , Propionates , Chemistry , Yeasts , Metabolism
10.
Chinese Journal of Biotechnology ; (12): 331-340, 2014.
Article in Chinese | WPRIM | ID: wpr-279515

ABSTRACT

Zinc-finger proteins have been widely studied due to their highly conserved structures and DNA-binding specificity of zinc-finger domains. However, researches on the zinc-finger proteins from microorganisms, especially those from prokaryotes, are still very limited. This review focuses on the latest progress on microbial zinc-finger proteins, especially those from prokaryotes and the application of artificial zinc-finger proteins in the breeding of robust strains. Artificial zinc-finger proteins with transcriptional activation or repression domain can regulate the global gene transcription of microbial cells to acquire improved phenotypes, such as stress tolerance to heat, ethanol, butanol, and osmotic pressure. Using the zinc-finger domain as DNA scaffold in the construction of enzymatic system can enhance the catalytic efficiency and subsequently the production of specific metabolites. Currently, zinc-finger domains used in the construction of artificial transcription factor are usually isolated from mammalian cells. In the near future, novel transcription factors can be designed for strain development based on the natural zinc-finger domains from different microbes, which may be used to regulate the global gene expression of microbial cells more efficiently.


Subject(s)
Bacteria , Metabolism , DNA , Chemistry , Protein Engineering , Transcription Factors , Chemistry , Transcriptional Activation , Zinc Fingers
11.
Chinese Journal of Biotechnology ; (12): 368-380, 2014.
Article in Chinese | WPRIM | ID: wpr-279512

ABSTRACT

Industrial microorganisms are subject to various stress conditions, including products and substrates inhibitions. Therefore, improvement of stress tolerance is of great importance for industrial microbial production. Acetic acid is one of the major inhibitors in the cellulosic hydrolysates, which affects seriously on cell growth and metabolism of Saccharomyces cerevisiae. Studies on the molecular mechanisms underlying adaptive response and tolerance of acetic acid of S. cerevisiae benefit breeding of robust strains of industrial yeast for more efficient production. In recent years, more insights into the molecular mechanisms underlying acetic acid tolerance have been revealed through analysis of global gene expression and metabolomics analysis, as well as phenomics analysis by single gene deletion libraries. Novel genes related to response to acetic acid and improvement of acetic acid tolerance have been identified, and novel strains with improved acetic acid tolerance were constructed by modifying key genes. Metal ions including potassium and zinc play important roles in acetic acid tolerance in S. cerevisiae, and the effect of zinc was first discovered in our previous studies on flocculating yeast. Genes involved in cell wall remodeling, membrane transport, energy metabolism, amino acid biosynthesis and transport, as well as global transcription regulation were discussed. Exploration and modification of the molecular mechanisms of yeast acetic acid tolerance will be done further on levels such as post-translational modifications and synthetic biology and engineering; and the knowledge obtained will pave the way for breeding robust strains for more efficient bioconversion of cellulosic materials to produce biofuels and bio-based chemicals.


Subject(s)
Acetic Acid , Pharmacology , Genomics , Industrial Microbiology , Saccharomyces cerevisiae , Genetics
12.
Chinese Journal of Biotechnology ; (12): 669-673, 2014.
Article in Chinese | WPRIM | ID: wpr-279473

ABSTRACT

Chromosomal integration enables stable phenotype and therefore has become an important strategy for breeding of industrial Saccharomyces cerevisiae strains. pAUR135 is a plasmid that enables recycling use of antibiotic selection marker, and once attached with designated homologous sequences, integration vector for stable expression can be constructed. Development of S. cerevisiae strains by metabolic engineering normally demands overexpression of multiple genes, and employing pAUR135 plasmid, it is possible to construct S. cerevisiae strains by combinational integration of multiple genes in multiple sites, which results in different ratios of expressions of these genes. Xylose utilization pathway was taken as an example, with three pAUR135-based plasmids carrying three xylose assimilation genes constructed in this study. The three genes were sequentially integrated on the chromosome of S. cerevisiae by combinational integration. Xylose utilization rate was improved 24.4%-35.5% in the combinational integration strain comparing with that of the control strain with all the three genes integrated in one location. Strain improvement achieved by combinational integration is a novel method to manipulate multiple genes for genetic engineering of S. cerevisiae, and the recombinant strains are free of foreign sequences and selection markers. In addition, stable phenotype can be maintained, which is important for breeding of industrial strains. Therefore, combinational integration employing pAUR135 is a novel method for metabolic engineering of industrial S. cerevisiae strains.


Subject(s)
Genetic Engineering , Methods , Genetic Vectors , Metabolic Engineering , Plasmids , Genetics , Saccharomyces cerevisiae , Genetics , Xylose , Metabolism
13.
Chinese Journal of Biotechnology ; (12): 1672-1675, 2013.
Article in Chinese | WPRIM | ID: wpr-242426

ABSTRACT

Ethanol tolerance is related to the expression of multiple genes, and genome-based engineering approaches are much more efficient than manipulation of single genes. In this study, ultraviolet (UV) mutagenesis, dielectric barrier discharge (DBD) air plasma mutagenesis, and artificial transcription factor (ATF) technology were adopted to treat an industrial yeast strain S. cerevisiae Sc4126 to obtain mutants with improved ethanol tolerance. Mutants with high ethanol tolerance were obtained, and the ratio of positive mutants was compared. Among the three approaches, the rate of positive mutation obtained by ATF technology was 10- to 100-folds of that of the two other methods, with highest genetic stability, suggesting the ATF technology promising for rapid alteration of phenotypes of industry yeast strains for efficient ethanol fermentation.


Subject(s)
Adaptation, Physiological , Drug Resistance, Fungal , Genetics , Ethanol , Pharmacology , Fungal Proteins , Genetics , Metabolism , Industrial Microbiology , Methods , Mutagenesis , Saccharomyces cerevisiae , Genetics
14.
Chinese Journal of Biotechnology ; (12): 325-332, 2013.
Article in Chinese | WPRIM | ID: wpr-233242

ABSTRACT

Consolidated bioprocessing technology can be used for Kluyveromyces marxianus YX01 to produce ethanol from Jerusalem artichoke, which is one of the potential processes to produce biofuel from non-cereal crops. In this study, we combined the aeration rate with the substrate concentration to conduct cross-over experiments for K. marxinaus YX01, and studied ethanol fermentation and the influence of inulin enzyme activity. The substrate concentration had a little repressive effect on ethanol productivity. When substrate concentration reached 250 g/L under anaerobic conditions, ethanol concentration was 84.8 g/L, and ethanol yield was reduced from 86.4% (50 g/L substrate concentration) to 84.7% of the theoretical value. Aeration rate could accelerate K. marxinaus YX01 ethanol fermentation, but reduced ethanol yield. When substrate concentration reached 250 g/L under aeration at 1.0 vvm, ethanol yield was reduced from 84.7% under anaerobic conditions to 73.3% of the theoretical value. With increased concentration of the carbon source and reduced aeration rate, the inulinase of K. marxinaus YX01 reduced and the concentration of glycerol increased, however, the acetic acid increased with the increased concentration of the carbon source and aeration rate. When substrate concentration reached 250 g/L under anaerobic conditions, inulinase activity was only 6.59 U/mL; when substrate concentration reached 50 g/L under aeration at 1.0 vvm, inulinase activity was 21.54 U/mL.


Subject(s)
Ethanol , Metabolism , Fermentation , Glycoside Hydrolases , Metabolism , Helianthus , Metabolism , Inulin , Metabolism , Kluyveromyces , Classification , Metabolism , Substrate Specificity
15.
Chinese Journal of Biotechnology ; (12): 612-619, 2013.
Article in Chinese | WPRIM | ID: wpr-233216

ABSTRACT

Breeding of robust industrial Saccharomyces cerevisiae strains with high ethanol tolerance is of great significance for efficient fuel ethanol production. Zinc finger proteins play important roles in gene transcription and translation, and exerting control on the regulation of multiple genes. The sequence and localization of the zinc finger motif can be designed and engineered, and the artificial zinc finger protein can be used to regulate celluar metabolism. Stress tolerance of microbial strains is related to multiple genes. Therefore, it is possible to use artificially-designed zinc finger proteins to breed stress tolerant strains. In this study, a library containing artificial zinc finger protein encoding genes was transformed into the model yeast strain S288c. A recombinant strain named M01 with improved ethanol tolerance was obtained. The plasmid in M01 was isolated, and then transformed into the industrial yeast strain Sc4126. Ethanol tolerance of the recombinant strain of Sc4126 were significantly improved. When high gravity ethanol fermentation using 250 g/L glucose was performed, comparing with the wild-type strain, fermentation time of the recombinant strain was decreased by 24 h and the final ethanol concentration was enhanced by 6.3%. The results of this study demonstrate that artificial zinc finger proteins are able to exert control on stress tolerance of yeast strains, and these results provide basis to construct robust industrial yeast strains for efficient ethanol fermentation.


Subject(s)
Adaptation, Physiological , Drug Resistance, Fungal , Genetics , Ethanol , Pharmacology , Fungal Proteins , Genetics , Metabolism , Industrial Microbiology , Mutation , Genetics , Peptide Library , Saccharomyces cerevisiae , Genetics , Zinc Fingers
16.
Chinese Journal of Biotechnology ; (12): 772-784, 2013.
Article in Chinese | WPRIM | ID: wpr-233201

ABSTRACT

Dye-decolorizing peroxidase (DyP-type peroxidase) represents a group of heme-containing peroxidases able to decolour various organic dyes, most of which are xenobiotics. To identify and characterize a new DyP-type peroxidase (ZmDyP) from Zymomonas mobilis ZM4 (ATCC 31821), ZmDyP was amplified from the genomic DNA of Z. mobilis by PCR, and cloned into the Escherichia coli expression vector pET-21b(+). Alignment of the amino acid sequence of ZmDyP with other members of the DyP-type peroxidases revealed the presence of the active site conserved residues D149, R239, T254, F256 as well as the typical GXXDG motif, indicating that ZmDyP is a new member of the Dyp-type peroxidase family. pET-21b(+) containing ZmDyP gene was expressed in E. coli by IPTG induction. The expressed enzyme was purified by Ni-Chelating chromatography. SDS-PAGE analysis of the purified enzyme revealed a molecular weight of 36 kDa, whereas activity staining gave a molecular weight of 108 kDa, suggesting that the enzyme could be a trimer. In addition, ZmDyP is a heme-containing enzyme as shown by a typical heme absorption peak of Soret band. Moreover, ZmDyP showed high catalytic efficiency with 2, 2'-Azinobis-(3-ethylbenzthiazoline-6-sulphonate) as a substrate. These results enrich the pool of DyP-type peroxidases and lay a foundation for further studies.


Subject(s)
Amino Acid Sequence , Catalysis , Coloring Agents , Metabolism , Escherichia coli , Genetics , Metabolism , Molecular Sequence Data , Peroxidases , Genetics , Recombinant Proteins , Genetics , Zymomonas
17.
Chinese Journal of Biotechnology ; (12): 1048-1058, 2012.
Article in Chinese | WPRIM | ID: wpr-342417

ABSTRACT

We used ribosome engineering technology, with which antibiotic-resistant strains are resulted from mutations on microbial ribosome, to screen a high butanol-producing Clostridium strain. A novel mutant strain S3 with high butanol production and tolerance was obtained from the original Clostridium acetobutylicum L7 with the presence of mutagen of streptomycin. Butanol of 12.48 g/L and ethanol of 1.70 g/L were achieved in S3, 11.2% and 50%, respectively higher than the parent strain. The conversion rate of glucose to butanol increased from 0.19 to 0.22, and fermentation time was 9 h shorter. This caused an increase in butanol productivity by 30.5%, reaching 0.24 g/(Lh). The mutant butanol tolerance was increased from 12 g/L to 14 g/L, the viscosity of fermentation broth was dramatically decreased to 4 mPa/s, 60% lower than the parent strain. In addition, the genetic stability of mutant strain S3 was also favorable. These results demonstrate that ribosome engineering technology may be a promising process for developing high butanol-producing strains.


Subject(s)
Butanols , Metabolism , Clostridium acetobutylicum , Genetics , Metabolism , Fermentation , Genetic Engineering , Mutation , Recombinant Proteins , Genetics , Ribosomes , Genetics , Streptomycin , Pharmacology
18.
Chinese Journal of Biotechnology ; (12): 56-64, 2012.
Article in Chinese | WPRIM | ID: wpr-304513

ABSTRACT

The objective of this work is to investigate how dilution rate and carbon-to-nitrogen (C/N) ratio affects lipid accumulation by Rhodosporidium toruloides AS 2.138 9 in continuous culture. Under steady-state conditions, the increase in dilution rate led to the decrease in lipid content and lipid yield. The highest lipid yield and lipid content at D = 0.02 h(-1) were 0.18 g lipid/g sugar and 57.1%, respectively, while the highest lipid productivity and biomass productivity were obtained at D = 0.14 h(-1). The increase in C/N ratio led to the increase in lipid content. The highest lipid content of 38% was obtained at C/N = 237. The highest lipid yield of 0.12 g lipid/g sugar was obtained at C/N = 92. However, the highest lipid productivity of 0.12 g/(L x h) was obtained at C/N = 32. No significant changes were observed in terms of fatty acid composition of the lipid produced under different C/N ratios, and these three fatty acids, palmitic acid, stearic acid and oleic acid, took over 85% in all samples.


Subject(s)
Basidiomycota , Metabolism , Batch Cell Culture Techniques , Carbon , Metabolism , Culture Media , Fatty Acids , Metabolism , Glucose , Metabolism , Lipids , Nitrogen , Metabolism , Oleic Acid , Palmitic Acid , Metabolism
19.
Chinese Journal of Biotechnology ; (12): 1032-1039, 2011.
Article in Chinese | WPRIM | ID: wpr-324506

ABSTRACT

Ethanol fermentation from Jerusalem artichoke tubers by recombinant Saccharomyces cerevisiae strains expressing the inulinase gene (inu) from Kluyveromyces marxianus was investigated. The inu native and pgk promoters were used to drive the expression of the inu gene, and the inulinase was expressed as an extracellular enzyme. All positive clones (confirmed by PCR) were able to express inulinase as measured by enzyme activity in the culture supernatant, among which two clones HI6/6 and HPI6/3 were selected, and their inulinase activity and ethanol fermentation performance were compared with their wild type. The inulinase activities of 86 and 23.8 U/mL were achieved, which were 4.6-fold and 1.5-fold higher than that of the wild type. Furthermore, ethanol fermentation was carried out with the recombinants and medium containing 200 g/L raw Jerusalem artichoke meal, and ethanol concentrations of 55 g/L and 52 g/L were obtained, with ethanol yields of 0.495 and 0.453, respectively, equivalent to 96.9% and 88.6% of the theoretical value.


Subject(s)
Ethanol , Metabolism , Fermentation , Glycoside Hydrolases , Genetics , Bodily Secretions , Helianthus , Metabolism , Kluyveromyces , Genetics , Metabolic Engineering , Methods , Plant Tubers , Metabolism , Recombination, Genetic , Saccharomyces cerevisiae , Genetics
20.
Chinese Journal of Biotechnology ; (12): 52-59, 2011.
Article in Chinese | WPRIM | ID: wpr-351534

ABSTRACT

The flocculating yeast strain SPSC01 is a fusant strain of Saccharomyces cerevisiae and Schizosaccharomyces pombe. The use of SPSC01 to absorb Cr(VI) from Cr(VI) containing aqueous solution would greatly reduce the cost of post-adsorption separation, since the superior flocculating property of SPSC01 would allow easy separation of the Cr(VI)-biomass from the solution. In order to investigate the effects of flocculating proteins on Cr(VI) reduction and absorption by SPSC01, the absorption behaviors of SPSC01 and its parental strains were compared. The results showed that Cr(VI) removal rate of SPSC01 was almost the same as that of S. pombe, which also has flocculating ability, but was faster than that of S. cerevisiae, which has no flocculating ability. When the system reached equilibrium, the amount of total Cr adsorbed by S. pombe, SPSC01 and S. cerevisiae were 68.8%, 48.6% and 37.5%, respectively. This showed that flocculation was beneficial to Cr(VI) reduction and adsorption, and suggested that focculating proteins may play a role in enhancing the Cr(VI) adsorption capacity of SPSC01 and S. pombe. We investigated the mechanism of Cr(VI) adsorption by SPSC01 using chemical modification and FTIR. The results indicated that the major functional groups (amino, carboxyl and amide) of surface proteins may contribute to the absorption of Cr(VI).


Subject(s)
Adsorption , Biodegradation, Environmental , Chromium , Flocculation , Saccharomyces cerevisiae , Metabolism , Schizosaccharomyces , Metabolism , Surface Properties , Water Pollutants, Chemical
SELECTION OF CITATIONS
SEARCH DETAIL