Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Braz. j. med. biol. res ; 48(12): 1095-1100, Dec. 2015. graf
Article in English | LILACS | ID: lil-762920

ABSTRACT

In DNA vaccines, the gene of interest is cloned into a bacterial plasmid that is engineered to induce protein production for long periods in eukaryotic cells. Previous research has shown that the intramuscular immunization of BALB/c mice with a naked plasmid DNA fragment encoding the Mycobacterium leprae 65-kDa heat-shock protein (pcDNA3-Hsp65) induces protection against M. tuberculosis challenge. A key stage in the protective immune response after immunization is the generation of memory T cells. Previously, we have shown that B cells capture plasmid DNA-Hsp65 and thereby modulate the formation of CD8+ memory T cells after M. tuberculosis challenge in mice. Therefore, clarifying how B cells act as part of the protective immune response after DNA immunization is important for the development of more-effective vaccines. The aim of this study was to investigate the mechanisms by which B cells modulate memory T cells after DNA-Hsp65 immunization. C57BL/6 and BKO mice were injected three times, at 15-day intervals, with 100 µg naked pcDNA-Hsp65 per mouse. Thirty days after immunization, the percentages of effector memory T (TEM) cells (CD4+ and CD8+/CD44high/CD62Llow) and memory CD8+ T cells (CD8+/CD44high/CD62Llow/CD127+) were measured with flow cytometry. Interferon γ, interleukin 12 (IL-12), and IL-10 mRNAs were also quantified in whole spleen cells and purified B cells (CD43−) with real-time qPCR. Our data suggest that a B-cell subpopulation expressing IL-10 downregulated proinflammatory cytokine expression in the spleen, increasing the survival of CD4+ TEM cells and CD8+ TEM/CD127+ cells.


Subject(s)
Animals , Male , Mice , B-Lymphocytes/immunology , Heat-Shock Proteins/immunology , Immunomodulation/genetics , /genetics , RNA, Messenger/immunology , T-Lymphocyte Subsets/immunology , B-Lymphocytes/metabolism , Flow Cytometry , Gene Expression/genetics , Heat-Shock Proteins/therapeutic use , Immunologic Memory/physiology , Immunophenotyping/classification , Inflammation Mediators/analysis , Interferon-gamma/analysis , /immunology , /analysis , Mice, Knockout , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , RNA, Messenger/genetics , Spleen/cytology , Spleen/immunology , T-Lymphocyte Subsets/classification , Vaccines, DNA/immunology , Vaccines, DNA/therapeutic use
2.
Braz. j. med. biol. res ; 45(12): 1183-1194, Dec. 2012. ilus, mapas, tab
Article in English | LILACS | ID: lil-659642

ABSTRACT

In the last several years, the use of dendritic cells has been studied as a therapeutic strategy against tumors. Dendritic cells can be pulsed with peptides or full-length protein, or they can be transfected with DNA or RNA. However, comparative studies suggest that transfecting dendritic cells with messenger RNA (mRNA) is superior to other antigen-loading techniques in generating immunocompetent dendritic cells. In the present study, we evaluated a new therapeutic strategy to fight tuberculosis using dendritic cells and macrophages transfected with Hsp65 mRNA. First, we demonstrated that antigen-presenting cells transfected with Hsp65 mRNA exhibit a higher level of expression of co-stimulatory molecules, suggesting that Hsp65 mRNA has immunostimulatory properties. We also demonstrated that spleen cells obtained from animals immunized with mock and Hsp65 mRNA-transfected dendritic cells were able to generate a mixed Th1/Th2 response with production not only of IFN-γ but also of IL-5 and IL-10. In contrast, cells recovered from mice immunized with Hsp65 mRNA-transfected macrophages were able to produce only IL-5. When mice were infected with Mycobacterium tuberculosis and treated with antigen-presenting cells transfected with Hsp65 mRNA (therapeutic immunization), we did not detect any decrease in the lung bacterial load or any preservation of the lung parenchyma, indicating the inability of transfected cells to confer curative effects against tuberculosis. In spite of the lack of therapeutic efficacy, this study reports for the first time the use of antigen-presenting cells transfected with mRNA in experimental tuberculosis.


Subject(s)
Animals , Male , Mice , Antigen-Presenting Cells/immunology , Bacterial Proteins/administration & dosage , /administration & dosage , Mycobacterium tuberculosis/immunology , RNA, Messenger/immunology , Tuberculosis Vaccines/administration & dosage , Tuberculosis/immunology , Bacterial Proteins/adverse effects , Bacterial Proteins/immunology , /adverse effects , /immunology , Mice, Inbred BALB C , RNA, Messenger/adverse effects , Spleen/immunology , Transfection , Tuberculosis Vaccines/adverse effects , Tuberculosis Vaccines/immunology , Tuberculosis/prevention & control
3.
Braz. j. med. biol. res ; 43(7): 645-650, July 2010. ilus, graf
Article in English | LILACS | ID: lil-550735

ABSTRACT

Leukotrienes are reported to be potent proinflammatory mediators that play a role in the development of several inflammatory diseases such as asthma, rheumatoid arthritis and periodontal disease. Leukotrienes have also been associated with protection against infectious diseases. However, the role of leukotrienes in Mycobacterium tuberculosis infection is not understood. To answer this question, we studied the role of leukotrienes in the protective immune response conferred by prime-boost heterologous immunization against tuberculosis. We immunized BALB/c mice (4-11/group) with subcutaneous BCG vaccine (1 x 10(5) M. bovis BCG) (prime) followed by intramuscular DNA-HSP65 vaccine (100 µg) (boost). During the 30 days following the challenge, the animals were treated by gavage daily with MK-886 (5 mg·kg-1·day-1) to inhibit leukotriene synthesis. We showed that MK-886-treated mice were more susceptible to M. tuberculosis infection by counting the number of M. tuberculosis colony-forming units in lungs. The histopathological analysis showed an impaired influx of leukocytes to the lungs of MK-886-treated mice after infection, confirming the involvement of leukotrienes in the protective immune response against experimental tuberculosis. However, prime-boost-immunized mice treated with MK-886 remained protected after challenge with M. tuberculosis, suggesting that leukotrienes are not required for the protective effect elicited by immunization. Protection against M. tuberculosis challenge achieved by prime-boost immunization in the absence of leukotrienes was accompanied by an increase in IL-17 production in the lungs of these animals, as measured by ELISA. Therefore, these data suggest that the production of IL-17 in MK-886-treated, immunized mice could contribute to the generation of a protective immune response after infection with M. tuberculosis.


Subject(s)
Animals , Female , Mice , Bacterial Proteins/immunology , /immunology , Leukocytes/immunology , Leukotrienes/biosynthesis , Tuberculosis, Pulmonary/prevention & control , Vaccines, DNA/immunology , BCG Vaccine/administration & dosage , BCG Vaccine/immunology , Bacterial Proteins/administration & dosage , Cell Movement , /administration & dosage , Cytokines/biosynthesis , Immunization, Secondary , Indoles/pharmacology , Leukotriene Antagonists/pharmacology , Leukotrienes/agonists , Lung/immunology , Lung/microbiology , Lung/pathology , Mice, Inbred BALB C , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/pathology , Vaccines, DNA/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL