Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Braz. arch. biol. technol ; 59: e16150632, 2016. tab, graf
Article in English | LILACS | ID: biblio-951403

ABSTRACT

Amylase is recognized as one of the important commercial enzymes. This group of enzymes has the ability in hydrolyzing starch into smaller oligosacharides. The present work aimed to determine the optimum fermentation conditions for maximum production of crude amylase enzyme by Aspergillus flavus NSH9 employing response surface methodology (RSM).Central composite design (CCD) was applied to determine the optimal fermentation condition with respect to the four main process parameters such as temperature, initial moisture content, pH and the incubation period. Solid state fermentation (SSF) was performed using 5.0 g of sago hampas inoculated with 1x107sporesmL-1following the experimental design obtained using CCD and further optimized by RSM. The initial moisture, pH and temperature showed significant effect on the amylase production (p<0.05). The maximum amylase activity produced was achieved and recorded as 1.055 ± 0.03U mL-1after four days of fermentation period with 100% (v/v) moisture holding capacity, pH 6.5 and temperature at 28°C. The optimum fermentation conditions for amylase production was determined with A. flavusNSH9 on sago hampas.

2.
Braz. arch. biol. technol ; 57(6): 811-820, Nov-Dec/2014. tab, graf
Article in English | LILACS | ID: lil-730397

ABSTRACT

Four fungal isolates, SD12, SD14, SD19 and SD20 isolated from the aged sawdust grew on agar plates supplemented with PCP up to a concentration of 100 mg L-1. At high PCP concentration, isolate SD12 showed the highest radial growth rate of 10 mm day-1, followed by SD14 and SD19 both with 4.5 mm day-1 and SD20 with 4.2 mm day-1. Ultrastructural study on the effect of PCP on the PCP tolerant fungi using scanning electron microscope showed that high concentration of PCP caused the collapse of both fungal hyphae and spores. Among the four PCP tolerant fungi examined, isolate SD12 showed the least structural damage at high PCP concentration of 100 mg L-1. This fungal isolate was further characterized and identified as Cunninghamella sp. UMAS SD12. Preliminary PCP biodegradation trial performed in liquid minimal medium supplemented with 20 mg L-1 of PCP using Cunninghamella sp. UMAS SD12 showed that the degradation up to 51.7% of PCP in 15 days under static growth condition.

SELECTION OF CITATIONS
SEARCH DETAIL