Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
1.
Indian J Dermatol Venereol Leprol ; 2018 Jan; 84(1): 39-44
Article | IMSEAR | ID: sea-192344

ABSTRACT

Background: Increased oxidative stress and resulting inflammation has been emphasized as a factor in the pathogenesis of many diseases including psoriasis. Glutathione S-transferases (GSTs) protect against oxidative stress, inflammation, and genotoxicity. Polymorphisms in the GST genes may lead to an imbalance in pro- and antioxidant systems resulting in the increased production of reactive oxygen species that could influence the pathogenesis of psoriasis. Aim: The aim of this study was to investigate the association between GSTs (GSTM1 and GSTT1) gene polymorphism in patients with chronic plaque psoriasis as a factor in the susceptibility and development of psoriasis. Materials and Methods: We assessed 128 patients with psoriasis and 250 age- and sex-matched healthy controls. Genomic DNA was extracted from peripheral blood by the phenol chloroform method. The null GSTT1 and GSTM1 genotypes were identified by multiplex polymerase chain reaction (PCR) method. Results: The null genotype of GSTM1 and GSTT1 was seen in 45.3% and 40.6% in psoriasis patients whereas in the controls it was 34.4% and 20.0%, respectively. A significant association was seen between the null alleles of the GSTT1 (OR = 2.74) and GSTM1 (OR = 1.58) alone or in combination with tobacco use (P < 0.001) and psoriasis risk. The presence of both null genotypes of GSTM1 and GSTT1 further increased the risk of psoriasis (OR = 3.52) when compared with the positive genotypes of GSTM1 and GSTT1. Limitations: A major limitation of this study was the small sample size. A large epidemiological study is necessary to confirm these findings. Conclusions: The null genotype of GSTT1 is a strong predisposing factor for psoriasis in North India.

2.
J Biosci ; 1987 Jun; 12(2): 111-114
Article in English | IMSEAR | ID: sea-160568

ABSTRACT

The mechanism of hypocholesterolemic action of glucagon was studied in rats. A single injection of glucagon resulted in decreased synthesis of hepatic cholesterol, decreased release of lipoproteins into the circulation and increased degradation of cholesterol to bile acids in the liver. Lipoprotein lipase activity of the extrahepatic tissues was not affected.

4.
J Biosci ; 1986 Dec; 10(4): 487-493
Article in English | IMSEAR | ID: sea-160720

ABSTRACT

Magnesium deficiency in rats has significant effect on the concentration of different glycosaminoglycans in the tissues, the nature of the change being different in different tissues. Total glycosaminoglycans, chondroitin-4-sulphate + chondroitin-6- sulphate and dermatan sulphate increased in the aorta while hyaluronic acid, heparan sulphate and heparin decreased. In the liver, total glycosaminoglycans, hyaluronic acid, chondroitin-4-sulphate + 6-sulphate and heparin decreased while total glycosaminoglycans and all the glycosaminoglycan fractions increased in the heart. In the kidney, total glycosaminoglycans showed no significant alteration, hyaluronic acid and heparin decreased while chondroitin-4-sulphate + 6-sulphate increased. Activity of biosynthetic enzymes viz. glucosamine-o-phosphate isomerase and UDPG-dehydrogenase showed decrease in the liver. The concentration of 3'-phosphoadenosine 5'-phosphosulphate, activity of sulphate activating system and sulphotransferase were also similarly altered in the liver in magnesium deficiency.

SELECTION OF CITATIONS
SEARCH DETAIL