Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Braz. j. med. biol. res ; 50(1): e5794, 2017. graf
Article in English | LILACS | ID: biblio-839241

ABSTRACT

Propofol is a frequently used intravenous anesthetic agent. Recent studies show that propofol exerts a number of non-anesthetic effects. The present study aimed to investigate the effects of propofol on lung cancer cell lines H1299 and H1792 and functional role of microRNA (miR)-486 in these effects. H1299 and/or H1792 cells were treated with or without propofol and transfected or not with miR-486 inhibitor, and then cell viability and apoptosis were analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and flow cytometry. The expression of miR-486 was determined by quantitative real-time polymerase chain reaction (qRT-PCR) with or without propofol treatment. Western blot was performed to analyze the protein expression of Forkhead box, class O (FOXO) 1 and 3, Bcl-2 interacting mediator of cell death (Bim), and pro- and activated caspases-3. Results showed that propofol significantly increased the miR-486 levels in both H1299 and H1792 cells compared to untreated cells in a dose-dependent manner (P<0.05 or P<0.01). Propofol statistically decreased cell viability but increased the percentages of apoptotic cells and protein expressions of FOXO1, FOXO3, Bim, and pro- and activated caspases-3; however, miR-486 inhibitor reversed the effects of propofol on cell viability, apoptosis, and protein expression (P<0.05 or P<0.01). In conclusion, propofol might be an ideal anesthetic for lung cancer surgery by effectively inhibiting lung cancer cell viability and inducing cell apoptosis. Modulation of miR-486 might contribute to the anti-tumor activity of propofol.


Subject(s)
Humans , Lung Neoplasms/metabolism , MicroRNAs/metabolism , Propofol/pharmacology , Apoptosis/drug effects , Cell Survival/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Real-Time Polymerase Chain Reaction
2.
Braz. j. med. biol. res ; 48(4): 286-291, 4/2015. tab, graf
Article in English | LILACS | ID: lil-744366

ABSTRACT

This study aimed to determine the effects of different concentrations of propofol (2,6-diisopropylphenol) on lipopolysaccharide (LPS)-induced expression and release of high-mobility group box 1 protein (HMGB1) in mouse macrophages. Mouse macrophage cell line RAW264.7 cells were randomly divided into 5 treatment groups. Expression levels of HMGB1 mRNA were detected using RT-PCR, and cell culture supernatant HMGB1 protein levels were detected using enzyme-linked immunosorbent assay (ELISA). Translocation of HMGB1 from the nucleus to the cytoplasm in macrophages was observed by Western blotting and activity of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in the nucleus was detected using ELISA. HMGB1 mRNA expression levels increased significantly in the cell culture supernatant and in cells after 24 h of stimulating RAW264.7 cells with LPS (500 ng/mL). However, HMGB1 mRNA expression levels in the P2 and P3 groups, which received 500 ng/mL LPS with 25 or 50 μmol/mL propofol, respectively, were significantly lower than those in the group receiving LPS stimulation (P<0.05). After stimulation by LPS, HMGB1 protein levels were reduced significantly in the nucleus but were increased in the cytoplasm (P<0.05). Simultaneously, the activity of NF-κB was enhanced significantly (P<0.05). After propofol intervention, HMGB1 translocation from the nucleus to the cytoplasm and NF-κB activity were inhibited significantly (each P<0.05). Thus, propofol can inhibit the LPS-induced expression and release of HMGB1 by inhibiting HMGB1 translocation and NF-κB activity in RAW264.7 cells, suggesting propofol may be protective in patients with sepsis.


Subject(s)
Animals , Mice , Anesthetics, Intravenous/pharmacology , Cell Nucleus/drug effects , HMGB1 Protein/drug effects , Macrophages/drug effects , Propofol/pharmacology , RNA, Messenger/drug effects , Active Transport, Cell Nucleus , Anesthetics, Intravenous/administration & dosage , Blotting, Western , Cell Line , Cell Nucleus/metabolism , Enzyme-Linked Immunosorbent Assay , Gene Expression/drug effects , HMGB1 Protein/genetics , HMGB1 Protein/metabolism , Lipopolysaccharides , Macrophages/metabolism , NF-kappa B/drug effects , NF-kappa B/metabolism , Propofol/administration & dosage , Random Allocation , Real-Time Polymerase Chain Reaction , RNA, Messenger/metabolism
3.
Braz. j. med. biol. res ; 47(3): 252-258, 03/2014. tab, graf
Article in English | LILACS | ID: lil-704618

ABSTRACT

Beclin 1 plays a critical role in autophagy and functions as a haploinsufficient tumor suppressor. The expression and prognostic significance of beclin 1 in head and neck adenoid cystic carcinoma (ACC) are largely unexplored. Therefore, we investigated the expression of beclin 1, Bcl-2, and p53 in head and neck ACC tissue. Tissue samples from 35 cases (15 females, 20 males) of head and neck ACC were utilized for immunohistochemistry. Beclin 1 expression was observed in 32 cases (91.4%) and considered to be high in 15 cases (42.9%) and low in 20 cases (57.1%). Beclin 1 expression was significantly correlated with a histological growth pattern (P=0.046) and histological grade (P=0.037). Beclin 1 expression was inversely correlated with Bcl-2 expression (P=0.013) and significantly associated with overall survival (P=0.006). Bcl-2 and p53 expression were observed in 21 cases (60.0%) and 16 cases (45.7%). Bcl-2 expression was significantly correlated with perineural invasion (P=0.041) and not associated with overall survival (P=0.053). p53 expression was directly correlated with beclin 1 expression (P=0.044). Our results indicated that beclin 1 may be a novel, promising prognostic factor for clinical outcome in head and neck ACC patients and may play a part in the development of head and neck ACC by interacting with Bcl-2 and p53.


Subject(s)
Adolescent , Adult , Aged , Female , Humans , Male , Middle Aged , Young Adult , Apoptosis Regulatory Proteins/metabolism , Carcinoma, Adenoid Cystic/metabolism , Membrane Proteins/metabolism , /metabolism , Salivary Gland Neoplasms/metabolism , /analysis , Autophagy/physiology , Head and Neck Neoplasms/metabolism , Immunohistochemistry , Kaplan-Meier Estimate , Prognosis
4.
Braz. j. med. biol. res ; 43(1): 43-51, Jan. 2010. ilus, tab
Article in English | LILACS | ID: lil-535635

ABSTRACT

Myocardial ischemic preconditioning up-regulated protein 1 (Mipu1), a novel zinc finger protein, was originally cloned using bioinformatic analysis and 5' RACE technology of rat heart after a transient myocardial ischemia/reperfusion procedure in our laboratory. In order to investigate the functions of Mipu1, the recombinant prokaryotic expression vector pQE31-Mipu1 was constructed and transformed into Escherichia coli M15(pREP4), and Mipu1-6His fusion protein was expressed and purified. The identity of the purified protein was confirmed by mass spectrometry. The molecular mass of the Mipu1 protein was 70.03779 kDa. The fusion protein was intracutaneously injected to immunize New Zealand rabbits to produce a polyclonal antibody. The antibody titer was approximately 1:16,000. The antibody was tested by Western blotting for specificity and sensitivity. Using the antibody, it was found that Mipu1 was highly expressed in the heart and brain of rats and was localized in the nucleus of H9c2 myogenic cells. The present study lays the foundation for further study of the biological functions of Mipu1.


Subject(s)
Animals , Rabbits , Rats , Antibodies, Monoclonal/biosynthesis , Brain Chemistry , Myocardial Ischemia/genetics , Myocardium/chemistry , Nuclear Proteins/metabolism , Repressor Proteins/metabolism , Cloning, Molecular , Escherichia coli/genetics , Gene Expression Regulation , Genetic Vectors/genetics , Genetic Vectors/metabolism , Mass Spectrometry , Myocardial Reperfusion , Nuclear Proteins/genetics , Repressor Proteins/genetics , Sensitivity and Specificity , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL