Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
1.
Journal of Cancer Prevention ; : 109-116, 2018.
Article in English | WPRIM | ID: wpr-740109

ABSTRACT

PIM (proviral integration site for moloney murine leukemia virus) kinase plays a key role as an oncogene in various cancers including myeloma, leukemia, prostate and breast cancers. The aberrant expression and/or activation of PIM kinases in various cancers follow an isoform-specific pattern. While PIM1 is predominantly expressed in hematological and solid tumors, PIM2 and PIM3 are largely expressed in leukemia and solid tumors, respectively. All of PIM kinases cause transcriptional activation of genes involved in cell survival and cell cycle progression in cancer. A variety of pro-tumorigenic signaling molecules, such as MYC, p21(Cip1/Waf1)/p27(kip1), CDC25, Notch1 and BAD have been identified as the downstream targets of PIM kinases. So far, three kinds of adenosine triphosphate-competitive PIM inhibitors, SGI-1776, AZD1208, and LGH447 have been in clinical trials for the treatment of acute myelogenous leukemia, prostate cancer, lymphoma, or multiple myeloma. This review sheds light on the signaling pathways involved in the PIM kinase regulation and current status of developing PIM kinase inhibitors as clinical success in combating human cancer.


Subject(s)
Humans , Adenosine , Breast , Cell Cycle , Cell Survival , Leukemia , Leukemia, Myeloid, Acute , Lymphoma , Multiple Myeloma , Oncogenes , Phosphotransferases , Prostate , Prostatic Neoplasms , Transcriptional Activation
2.
Biomolecules & Therapeutics ; : 426-430, 2014.
Article in English | WPRIM | ID: wpr-169113

ABSTRACT

Prostate cancer is the most frequently diagnosed cancer. Although prostate tumors respond to androgen ablation therapy at an early stage, they often acquire the potential of androgen-independent growth. Elevated transcriptional activity of androgen receptor (AR) and/or signal transducer and activator of transcription-3 (STAT3) contributes to the proliferation of prostate cancer cells. In the present study, we examined the effect of resveratrol, a phytoalexin present in grapes, on the reporter gene activity of AR and STAT3 in human prostate cancer (LNCaP-FGC) cells stimulated with interleukin-6 (IL-6) and/or dihydrotestosterone (DHT). Our study revealed that resveratrol suppressed the growth of LNCaP-FGC cells in a time- and concentration-dependent manner. Whereas the AR transcriptional activity was induced by treatment with either IL-6 or DHT, the STAT3 transcriptional activity was induced only by treatment with IL-6 but not with DHT. Resveratrol significantly attenuated IL-6-induced STAT3 transcriptional activity, and DHT- or IL-6-induced AR transcriptional activity. Treatment of cells with DHT plus IL-6 significantly increased the AR transcriptional activity as compared to DHT or IL-6 treatment alone and resveratrol markedly diminished DHT plus IL-6-induced AR transcriptional activity. Furthermore, the production of prostate-specific antigen (PSA) was decreased by resveratrol in the DHT-, IL-6- or DHT plus IL-6-treated LNCaP-FGC cells. Taken together, the inhibitory effects of resveratrol on IL-6- and/or DHT-induced AR transcriptional activity in LNCaP prostate cancer cells are partly mediated through the suppression of STAT3 reporter gene activity, suggesting that resveratrol may be a promising therapeutic choice for the treatment of prostate cancer.


Subject(s)
Humans , Dihydrotestosterone , Genes, Reporter , Interleukin-6 , Prostate , Prostate-Specific Antigen , Prostatic Neoplasms , Receptors, Androgen , Transducers , Vitis
3.
Pakistan Journal of Pharmaceutical Sciences. 2007; 20 (2): 128-131
in English | IMEMR | ID: emr-84722

ABSTRACT

An alkaloid constituent 1-[5-[1,3-benzodioxol-5-yl]-1-oxo-2,4-pentadienyl]piperidine, trivial name piperine was isolated from Ludwigia hyssopifolia Linn. [Family-Onagraceae]. The ethylacetate extract of the plant and the isolated compound piperine were studied for antitumor and in vitro antibacterial activity. Ethylacetate extract showed 73.05 and 84.14% inhibition of Agrobacterium tumefaciens-induced crown gall tumor formation in potato disc. Piperine exhibited antitumor activity with IC50 value of 13.50

Subject(s)
Plant Preparations , Plant Extracts , Phytotherapy , Piperidines , Antineoplastic Agents , Anti-Bacterial Agents
4.
Cancer Research and Treatment ; : 152-158, 2006.
Article in English | WPRIM | ID: wpr-51250

ABSTRACT

PURPOSE: Inflammation acts as a driving force for the development of cancer. Multiple lines of evidence suggest that nonsteroidal anti-inflammatory drugs, especially those that specifically target cyclooxygenase-2 (COX-2), are effective in preventing certain cancers. The present study was aimed at investigating the antitumor promoting potential of celecoxib in chemically induced mouse skin tumorigenesis, as well as elucidating the underlying molecular mechanisms. MATERIALS AND METHODS: To study the antitumor promoting effects of celecoxib, we used the classical two-stage mouse skin tumorigenesis model that involves initiation with a single application of 7,12-dimethylbenz[alpha]anthracene (DMBA) followed by promotion with repeated applications of 12-O-tetradecanoylphorbol-13-acetate (TPA). The effects of celecoxib on the expression of COX-2, vascular endothelial growth factor (VEGF), p65 and the different isoforms of CCAAT/enhancer binding protein (C/EBP) were examined by performing Western blot analysis. Electrophoretic mobility gel shift assay was used to examine the effects of celecoxib on the TPA-induced DNA binding activities of various transcription factors. RESULTS: Our study revealed that topical application of celecoxib (10 micromol) significantly reduced the multiplicity of papillomas in DMBA-initiated and TPA-promoted mouse skin. Pretreatment with celecoxib also diminished the expression of COX-2 and VEGF in the mouse skin papillomas. Pretreatment with celecoxib attenuated DNA binding of transcription factor (C/EBP) in the TPA-stimulated mouse skin. Moreover, celecoxib suppressed the TPA-induced nuclear expression of C/EBPdelta, but not C/EBPbeta, in mouse skin in vivo. CONCLUSION: Our study demonstrates the inhibitory effects of celecoxib on mouse skin tumor promotion, which was associated with a decreased expression of COX-2 and VEGF, as well as inhibition of C/EBP activation.


Subject(s)
Animals , Mice , Blotting, Western , Carcinogenesis , Carrier Proteins , Chemoprevention , Cyclooxygenase 2 , DNA , Inflammation , NF-kappa B , Papilloma , Protein Isoforms , Skin , Transcription Factors , Vascular Endothelial Growth Factor A , Celecoxib
SELECTION OF CITATIONS
SEARCH DETAIL