Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Endocrinology and Metabolism ; : 134-145, 2021.
Article in English | WPRIM | ID: wpr-874540

ABSTRACT

Background@#In non-alcoholic fatty liver disease (NAFLD), transient elastography (TE) is an accurate non-invasive method to identify patients at risk of advanced fibrosis (AF). We developed a diabetes-specific, non-invasive liver fibrosis score based on TE to facilitate AF risk stratification, especially for use in diabetes clinics where TE is not readily available. @*Methods@#Seven hundred sixty-six adults with type 2 diabetes and NAFLD were recruited and randomly divided into a training set (n=534) for the development of diabetes fibrosis score (DFS), and a testing set (n=232) for internal validation. DFS identified patients with AF on TE, defined as liver stiffness (LS) ≥9.6 kPa, based on a clinical model comprising significant determinants of LS with the lowest Akaike information criteria. The performance of DFS was compared with conventional liver fibrosis scores (NFS, FIB-4, and APRI), using area under the receiver operating characteristic curve (AUROC), sensitivity, specificity, positive and negative predictive values (NPV). @*Results@#DFS comprised body mass index, platelet, aspartate aminotransferase, high-density lipoprotein cholesterol, and albuminuria, five routine measurements in standard diabetes care. Derived low and high DFS cut-offs were 0.1 and 0.3, with 90% sensitivity and 90% specificity, respectively. Both cut-offs provided better NPVs of >90% than conventional fibrosis scores. The AUROC of DFS for AF on TE was also higher (P<0.01) than the conventional fibrosis scores, being 0.85 and 0.81 in the training and testing sets, respectively. @*Conclusion@#Compared to conventional fibrosis scores, DFS, with a high NPV, more accurately identified diabetes patients at-risk of AF, who need further evaluation by hepatologists.

2.
Endocrinology and Metabolism ; : 145-151, 2017.
Article in English | WPRIM | ID: wpr-161483

ABSTRACT

Fibroblast growth factor 21 (FGF21) is an atypical member of the FGF family. Acting in an endocrine fashion, it increases glucose uptake, modulates lipid metabolism, and sensitizes insulin response in metabolically active organs, including the liver and adipose tissue. Emerging evidence shows a strong correlation between circulating FGF21 levels and the incidence and severity of atherosclerosis. Animal studies have demonstrated a beneficial role of FGF21 in protecting against aberrant lipid profile, while recent development in FGF21 mimetics has provided further insight into the lipid-lowering effects of FGF21 signaling. The present review summarizes the physiological roles of FGF21, and discusses major breakthroughs and limitations of FGF21 mimetic-based therapeutic strategies for treating atherosclerosis.


Subject(s)
Animals , Humans , Adipose Tissue , Atherosclerosis , Dyslipidemias , Fibroblast Growth Factors , Fibroblasts , Glucose , Incidence , Insulin , Lipid Metabolism , Liver
3.
Experimental & Molecular Medicine ; : e215-2016.
Article in English | WPRIM | ID: wpr-121100

ABSTRACT

Adipose tissue is a highly heterogeneous endocrine organ. The heterogeneity among different anatomical depots stems from their intrinsic differences in cellular and physiological properties, including developmental origin, adipogenic and proliferative capacity, glucose and lipid metabolism, insulin sensitivity, hormonal control, thermogenic ability and vascularization. Additional factors that influence adipose tissue heterogeneity are genetic predisposition, environment, gender and age. Under obese condition, these depot-specific differences translate into specific fat distribution patterns, which are closely associated with differential cardiometabolic risks. For instance, individuals with central obesity are more susceptible to developing diabetes and cardiovascular complications, whereas those with peripheral obesity are more metabolically healthy. This review summarizes the clinical and mechanistic evidence for the depot-specific differences that give rise to different metabolic consequences, and provides therapeutic insights for targeted treatment of obesity.


Subject(s)
Adipose Tissue , Adipose Tissue, White , Genetic Predisposition to Disease , Glucose , Insulin Resistance , Lipid Metabolism , Obesity , Obesity, Abdominal , Population Characteristics
SELECTION OF CITATIONS
SEARCH DETAIL