Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add filters








Year range
1.
The Korean Journal of Physiology and Pharmacology ; : 335-343, 2017.
Article in English | WPRIM | ID: wpr-727983

ABSTRACT

Atopic dermatitis (AD) is an inflammatory skin condition accompanied by symptoms such as edema and hemorrhage. Kimchi is a traditional fermented Korean dish consisting of various probiotics. In this study, the therapeutic effect of Lactobacillus plantarum CJLP55 isolated from Kimchi was studied in AD-induced mice. Orally administered Lactobacillus strain, CJLP55, suppressed AD symptoms and high serum IgE levels. CJLP55 administration reduced the thickness of the epidermis, infiltration of mast cells and eosinophils into the skin lesion, enlargement of axillary lymph nodes, and increase in cell population in axillary lymph nodes. CJLP55 treatment decreased the production of type 2 cytokines, such as interleukin (IL)-4, IL-5, IL-10, IL-12, interferon (IFN)-γ, and IL-6,which were stimulated by house dust mite extracts, in the axillary lymph node cells. Orally administered CJLP55 exhibited a therapeutic effect on house dust mite-induced AD in NC/Nga mice after onset of the disease by altering immune cell activation. The Lactobacillus strain, CJLP55, isolated from Kimchi, suppressed AD. Our results suggest its possible use as a potential candidate for management of AD.


Subject(s)
Animals , Mice , Cytokines , Dermatitis , Dermatitis, Atopic , Dermatophagoides farinae , Dust , Edema , Eosinophils , Epidermis , Hemorrhage , Immunoglobulin E , Interferons , Interleukin-10 , Interleukin-12 , Interleukin-5 , Interleukins , Lactobacillus , Lactobacillus plantarum , Lymph Nodes , Mast Cells , Probiotics , Pyroglyphidae , Skin , Th2 Cells , Therapeutic Uses
2.
The Korean Journal of Physiology and Pharmacology ; : 73-78, 2014.
Article in English | WPRIM | ID: wpr-727592

ABSTRACT

Cell death and survival are tightly controlled through the highly coordinated activation/inhibition of diverse signal transduction pathways to insure normal development and physiology. Imbalance between cell death and survival often leads to autoimmune diseases and cancer. Death receptors sense extracellular signals to induce caspase-mediated apoptosis. Acting upstream of CED-3 family proteases, such as caspase-3, Bcl-2 prevents apoptosis. Using short hairpin RNAs (shRNAs), we suppressed Bcl-2 expression in Jurkat T cells, and this increased TCR-triggered AICD and enhanced TNFR gene expression. Also, knockdown of Bcl-2 in Jurkat T cells suppressed the gene expression of FLIP, TNF receptor-associated factors 3 (TRAF3) and TRAF4. Furthermore, suppressed Bcl-2 expression increased caspase-3 and diminished nuclear factor kappa B (NF-kappaB) translocation.


Subject(s)
Humans , Apoptosis , Autoimmune Diseases , Caspase 3 , Cell Death , Gene Expression , NF-kappa B , Peptide Hydrolases , Physiology , Receptors, Death Domain , RNA, Small Interfering , Signal Transduction , T-Lymphocytes , TNF Receptor-Associated Factor 4 , Tumor Necrosis Factor Receptor-Associated Peptides and Proteins
3.
The Korean Journal of Physiology and Pharmacology ; : 349-353, 2012.
Article in English | WPRIM | ID: wpr-728297

ABSTRACT

Activated T cells express inhibitory receptors such as CTLA-4 that can downregulate immune responses. Blockade of or genetic deficiency in CTLA-4 can result in autoimmunity. Therefore, strategies to increase the inhibitory function of CTLA-4 may be attractive in settings of undesirable T cell responses such as autoimmunity or transplant rejection. We have tested the hypothesis that transgenic constitutive expression of CTLA-4 can further attenuate immune responses when compared with normal inducible expression. Our results indicate that transgenic expression of CTLA-4 in mouse T cells (CTLA-4-Tg T cells) results in reduced cell cycle progression and increased apoptosis of TCR-stimulated T cells. CTLA-4-Tg T cells display reduced T cell proliferation in an in vivo model of graft versus host disease (GVHD). These results further our understanding of how CTLA-4 can be manipulated to inhibit immune responses and may help development of new therapeutic strategies for clinical settings of autoimmunity and transplantation.


Subject(s)
Animals , Mice , Apoptosis , Autoimmunity , Cell Cycle , Cell Proliferation , Graft Rejection , Graft vs Host Disease , Rodentia , T-Lymphocytes , Transplants
4.
The Korean Journal of Physiology and Pharmacology ; : 463-468, 2012.
Article in English | WPRIM | ID: wpr-728181

ABSTRACT

Type 1 diabetes (T1D) is caused by dysregulation of the immune system in the pancreatic islets, which eventually leads to insulin-producing pancreatic beta-cell death and destabilization of glucose homeostasis. One of the major characteristics of T1D pathogenesis is the production of inflammatory mediators by macrophages that result in destruction or damage of pancreatic beta-cells. In this study the inflammatory microenvironment of T1D was simulated with RAW264.7 cells and MIN6 cells, acting as macrophages and pancreatic beta-cells respectably. In this setting, peroxiredoxin-1, an anti-oxidant enzyme was knocked down to observe its functions in the pathogenesis of T1D. RAW264.7 cells were primed with lipopolysaccharide and co-cultured with MIN6 cells while PRX-1 was knocked down in one or both cell types. Our results suggest that hindrance of PRX-1 activity or the deficiency of this enzyme in inflammatory conditions negatively affects pancreatic beta-cell survival. The observed decrease in viability of MIN6 cells seems to be caused by nitric oxide production. Additionally, it seems that PRX-1 affects previously reported protective activity of IL-6 in pancreatic beta cells as well. These results signify new, undiscovered roles for PRX-1 in inflammatory conditions and may contribute toward our understanding of autoimmunity.


Subject(s)
Autoimmunity , Down-Regulation , Glucose , Homeostasis , Immune System , Insulin-Secreting Cells , Interleukin-6 , Islets of Langerhans , Macrophages , Nitric Oxide , Peroxiredoxins
5.
Immune Network ; : 27-32, 2006.
Article in Korean | WPRIM | ID: wpr-109768

ABSTRACT

BACKGROUND: Chronic inflammation in the brain has known to be associated with the development of a various neurological diseases including dementia. In general, the characteristic of neuro-inflammation is the activated microglia over the brain where the pathogenesis occurs. Pro-inflammatory repertoires, interleukin-1beta (IL-1beta) and nitric oxide (NO), are the main causes of neuro-degenerative disease, particularly in Alzheimer's disease (AD) which is caused by neuronal destruction. Those pro-inflammatory repertoires may lead the brain to chronic inflammatory status, and thus we hypothesized that chronic inflammation would be inhibited when pro-inflammatory repertoires are to be well controlled by inactivating the signal transduction associated with inflammation. METHODS: In the present study, we examined whether biphenyl dimethyl dicarboxylate (DDB), an active compound from Schizandra chinensis Baillon, inhibits the NO production by a direct method using Griess reagent and by RT-PCR in the gene expression of inducible nitric oxide synthase ((i)NOS) and IL-1beta. Western blots were also used for the analysis of NF-kappaB and IkappaB. RESULTS: In the study, we found that DDB effectively inhibited IL-1beta as well as NO production in BV-2 microglial cell, and the translocation of NF-kappaB was comparably inhibited in the presence of DDB comparing those to the positive control, lipopolysaccharide. CONCLUSION: The data suggested that the DDB from Schizandra chinensis Baillon may play an effective role in inhibiting the pro-inflammatory repertoires which may cause neurodegeneration and the results imply that the compound suppresses a cue signal of the microglial activation which can induce the brain pathogenesis such as Alzheimer's disease.


Subject(s)
Alzheimer Disease , Blotting, Western , Brain , Cues , Dementia , Gene Expression , Inflammation , Interleukin-1beta , Microglia , Neurons , NF-kappa B , Nitric Oxide , Nitric Oxide Synthase Type II , Schisandra , Signal Transduction
6.
Immune Network ; : 86-92, 2006.
Article in Korean | WPRIM | ID: wpr-79620

ABSTRACT

BACKGROUND: Germanium compounds are increased to use in nutrient foods and medicines in terms of antibiotics to microbes, anticancer, modulation of immune system and neutralizing heavy metal toxins. Geranti Bio-Ge Yeast, containing stable organic germanium and bound to the yeast protein was developed by Geranti Pharm. LTD. and the modulation effect in the immune system was examined in vivo and in vitro. METHODS: The compound, Geranti Bio-Ge Yeast, was fed to female Balb/c mice (each group has 10 mice) for 4 weeks and the yeast powder and steamed red ginseng powder were used as control during the same feeding time points. During 4 weeks there was no symptom to be considered, and after 4 weeks feeding all mice were sacrificed to check the changes of related immune cells and subsidiary responses (i.e. cell counting, FACS, MTT, LDH, PFC assay). RESULTS: In pre-post comparison, B cell population was increased in the group of Geranti Bio-Ge Yeast in a dose dependent manner (100 to 800 mg/kg). However, the population of T cell, dendritic cell and macrophage was not comparably changed in all doses. The ability of cytokine production and proliferation was almost same level as shown in control group. In contrast, PFC assay informed that the compound increase the antibody production ability when fed over 200 mg/kg implying that the increase of PFC number might be due to the increase of B cells. CONCLUSION: Over the entire study, we concluded that the compound, Geranti Bio-Ge Yeast has better potential in immune response in terms of B cell proliferation than that of positive control, red ginseng, and the compound can be one of the future candidates for a new supplementary source improving immune system activity.


Subject(s)
Animals , Female , Humans , Mice , Anti-Bacterial Agents , Antibodies , Antibody Formation , B-Lymphocytes , Cell Count , Cell Proliferation , Dendritic Cells , Germanium , Immune System , Macrophages , Panax , Steam , Yeast, Dried , Yeasts
7.
Immune Network ; : 45-49, 2005.
Article in Korean | WPRIM | ID: wpr-127000

ABSTRACT

BACKGROUND: Inflammation in the brain has known to be associated with the development of a various neurological diseases. The hallmark of neuro-inflammation is the activation of microglia, brain macrophage. Pro-inflammatory compounds including nitric oxide (NO) are the main cause of neuro-degenerative disease such as Alzheimer's disease (AD) which is resulted in cell death. Among those pro-inflammatory compounds, NO contributes to the cell death by directly or indirectly. METHODS: In the study, we examined whether ursodeoxycholic acid (UDCA), a non-toxic hydrophilic bile acid, inhibits the NO production by a direct method using Griess reagent and by RT-PCR in the gene expression of inducible nitric oxide synthase (iNOS). In signal transduction, we also examined the NF-kappa B (p65/p50), IKK, and Ikappa B, which are associated with the expression of iNOS gene using western blots. RESULTS: In the present study, we found that UDCA effectively inhibited NO production in BV-2 microglial cell, and NF-kappa B activation was reduced by suppressing IKK gene expression and by increasing the Ikappa B in cytosol comparing those to the positive control LPS. CONCLUSION: Taken together, these data suggested that UDCA may play a crucial role in inhibiting the NO production and the results imply that UDCA suppresses a cue signal of the microglial activation via stimulators, such as beta-amyloid peptides which are known to stimulate microglia in AD pathogenesis.


Subject(s)
Alzheimer Disease , Bile , Blotting, Western , Brain , Cell Death , Cell Line , Cues , Cytosol , Gene Expression , Inflammation , Macrophages , Microglia , NF-kappa B , Nitric Oxide , Nitric Oxide Synthase Type II , Peptides , Signal Transduction , Ursodeoxycholic Acid
SELECTION OF CITATIONS
SEARCH DETAIL