Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Type of study
Year range
1.
Rev. méd. Chile ; 149(11)nov. 2021.
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1389393

ABSTRACT

With or without a COVID19 pandemic, cancer is and will continue to be one of the greatest health challenges on the planet. In Chile, during 2016, this disease was the second cause of death in the country and during 2019, it was the first cause in seven Chilean regions, surpassing cardiovascular diseases. With the advent of precision medicine as a powerful tool for cancer control, it is necessary to have genomic, proteomic, and molecular data in general, ideally on a population scale. This is essential for decision-making, for example in public and private oncology, to be as cost-effective as possible. Chile has a mass of high-quality researchers in cancer. However, until today the investment in research and development is far below the peers in the OECD. In this work we put into perspective the role of precision medicine and omic sciences as essential tools for public health. We offer a brief national diagnosis of the knowledge collected to date by the local scientific community regarding onco-genomic data from our own population. We finally discuss the potential behind the strengthening of this scientific knowledge, aiming to optimize the comprehensive management of cancer.

2.
Biol. Res ; 51: 36, 2018. graf
Article in English | LILACS | ID: biblio-983940

ABSTRACT

BACKGROUND: Whole transcriptome RNA variant analyses have shown that adenosine deaminases acting on RNA ( ADAR ) enzymes modify a large proportion of cellular RNAs, contributing to transcriptome diversity and cancer evolution. Despite the advances in the understanding of ADAR function in breast cancer, ADAR RNA editing functional consequences are not fully addressed. RESULTS: We characterized A to G(I) mRNA editing in 81 breast cell lines, showing increased editing at 3'UTR and exonic regions in breast cancer cells compared to immortalized non-malignant cell lines. In addition, tumors from the BRCA TCGA cohort show a 24% increase in editing over normal breast samples when looking at 571 well-characterized UTRs targeted by ADAR1. Basal-like subtype breast cancer patients with high level of ADAR1 mRNA expression shows a worse clinical outcome and increased editing in their 3'UTRs. Interestingly, editing was particularly increased in the 3'UTRs of ATM, GINS4 and POLH transcripts in tumors, which correlated with their mRNA expression. We confirmed the role of ADAR1 in this regulation using a shRNA in a breast cancer cell line (ZR-75-1). CONCLUSIONS: Altogether, these results revealed a significant association between the mRNA editing in genes related to cancer-relevant pathways and clinical outcomes, suggesting an important role of ADAR1 expression and function in breast cancer.


Subject(s)
Humans , Female , Breast Neoplasms/genetics , Adenosine Deaminase/genetics , RNA-Binding Proteins/genetics , RNA Editing/genetics , Untranslated Regions/genetics , RNA Stability/genetics , Breast Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Adenosine Deaminase/metabolism , RNA-Binding Proteins/metabolism , Gene Expression Profiling , RNA Stability/physiology , Cell Line, Tumor
3.
Biol. Res ; 41(2): 217-225, 2008. graf
Article in English | LILACS | ID: lil-495756

ABSTRACT

DNA damage repair was assessed in quiescent (G0) leukocytes and in hepatocytes of mice, after 1 and 2 hours recovery from a single whole body y-irradiation with 0.5, 1 or 2 Gy. Evaluation of single-strand breaks (SSB) and alkali-labile sites together were carried out by a single-cell electrophoresis at pH>13.0 (alkaline comet assay). In non-irradiated (control) mice, the constitutive, endogenous DNA damage (basal) was around 1.5 times higher in leukocytes than in hepatocytes. Irradiation immediately increased SSB frequency in both cell types, in a dose-dependent manner. Two sequential phases took place during the in vivo repair of the radio-induced DNA lesions. The earliest one, present in both hepatocytes and leukocytes, further increased the SSB frequency, making evident the processing of some primary lesions in DNA bases into the SSB repair intermediates. In a second phase, SSB frequency decreased because of their removal. In hepatocytes, such a frequency regressed to the constitutive basal level after 2 hours recovery from either 0.5 orí Gy. On the other hand, the SSB repair phase was specifically abrogated in leukocytes, at the doses and recovery times analyzed. Thus, the efficiency of in vivo repair of radio-induced DNA damage in dormant cells (lymphocytes) is quite different from that in hepatocytes whose low proliferation activity accounts only for cell renewal.


Subject(s)
Animals , Female , Mice , DNA Damage , DNA Repair/physiology , Gamma Rays , Hepatocytes/radiation effects , Leukocytes/radiation effects , Whole-Body Irradiation , Comet Assay
4.
Biol. Res ; 38(2/3): 179-185, 2005. tab
Article in English | LILACS | ID: lil-424721

ABSTRACT

Checkpoint response to DNA damage involves the activation of DNA repair and G2 lengthening subpathways. The roles of nibrin (NBS1) and the ATM/ATR kinases in the G2 DNA damage checkpoint, evoked by endogenous and radio-induced DNA damage, were analyzed in control, A-T and NBS lymphoblast cell lines. Short-term responses to G2 treatments were evaluated by recording changes in the yield of chromosomal aberrations in the ensuing mitosis, due to G2 checkpoint adaptation, and also in the duration of G2 itself. The role of ATM/ATR in the G2 checkpoint pathway repairing chromosomal aberrations was unveiled by caffeine inhibition of both kinases in G2. In the control cell lines, nibrin and ATM cooperated to provide optimum G2 repair for endogenous DNA damage. In the A-T cells, ATR kinase substituted successfully for ATM, even though no G2 lengthening occurred. X-ray irradiation (0.4 Gy) in G2 increased chromosomal aberrations and lengthened G2, in both mutant and control cells. However, the repair of radio-induced DNA damage took place only in the controls. It was associated with nibrin-ATM interaction, and ATR did not substitute for ATM. The absence of nibrin prevented the repair of both endogenous and radio-induced DNA damage in the NBS cells and partially affected the induction of G2 lengthening.


Subject(s)
/cytology , DNA Damage , DNA Damage/radiation effects , Proteins/pharmacology , Proteins/physiology , Proteins/chemical synthesis , Chromosome Aberrations/radiation effects , Ataxia Telangiectasia/etiology , Ataxia Telangiectasia/genetics , Ataxia Telangiectasia/chemically induced
SELECTION OF CITATIONS
SEARCH DETAIL