Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
J. venom. anim. toxins incl. trop. dis ; 15(2): 236-254, 2009. graf
Article in English | LILACS | ID: lil-517293

ABSTRACT

TsTX is an á-type sodium channel toxin that stimulates the discharge of neurotransmitters from neurons. In the present study we investigated which neurotransmitters are released in the hippocampus after TsTX injection and if they are responsible for electrographic or histopathological effects. Microdialysis revealed that the toxin increased glutamate extracellular levels in the hippocampus; however, levels of gamma-aminobutyric acid (GABA), glycine, 5-hydroxyindoleacetic acid (5-HIAA), homovanillic acid (HVA) and 3,4-dihydroxyphenylacetic acid (DOPAC) were not significantly altered. Neurodegeneration in pyramidal cells of hippocampus and electroencephalographic alterations caused by the toxin were blocked by pretreatment with riluzole, a glutamate release inhibitor. The present results suggest a specific activity of TsTX in the hippocampus which affects only glutamate release.


Subject(s)
Humans , Animals , Rats , Hippocampus , Neurotransmitter Agents , Scorpion Venoms/toxicity
2.
J. venom. anim. toxins incl. trop. dis ; 14(2): 322-337, 2008. graf, tab
Article in English | LILACS | ID: lil-484568

ABSTRACT

Tityus serrulatus is the most venomous scorpion in Brazil; however, it is not known whether its venom causes any harm to the offspring whose mothers have received it. This study investigates whether the venom of T. serrulatus may lead to deleterious effects in the offspring, when once administered to pregnant rats at a dose that causes moderate envenomation (3mg/kg). The venom effects were studied on the 5th and on the 10th gestation day (GD5 and GD10). The maternal reproductive parameters of the group that received the venom on GD5 showed no alteration. The group that received the venom on GD10 presented an increase in post-implantation losses. In this group, an increase in the liver weight was also observed and one-third of the fetuses presented incomplete ossification of skull bones. None of the groups that received the venom had any visceral malformation or delay in the fetal development of their offspring. The histopathological analysis revealed not only placentas and lungs but also hearts, livers and kidneys in perfect state. Even having caused little effect on the dams, the venom may act in a more incisive way on the offspring, whether by stress generation or by a direct action.


Subject(s)
Animals , Female , Rats , Fetus/abnormalities , Pregnancy, Animal , Scorpion Venoms/toxicity , Rats, Wistar
3.
J. venom. anim. toxins ; 6(2): 238-60, 2000. tab, graf
Article in English | LILACS, SES-SP | ID: lil-276611

ABSTRACT

It has been previously shown that the crude venom of Tityus serrulatus can cause convulsions. This study was designed to investigate the neurotoxic effects of B, C, G, and K fractions isolated from this venom. Intravenous injection of these fractions in mice (0.6 - 6.0 mg/kg body weight) showed that the C fraction is a potent convulsant and G fraction decreased the threshold for tonic hand limb extension elicited by transauricular electroshock. Unilateral injection of B, C, and K fractions, but not G fraction, into the spikes and epileptic discharges that began in the hippocampus and evolved to the cortex. The following motor signs were observed: movements of facial muscles, wet dog shake, immobility, myoclonus, wild-running with clonus, and in some cases, loss of postural control. Intrahippocampal injection of B, C, and K fraction, but not G fraction, caused neuronal loss at the injection site as well as in other hippocampal areas. The effect of these fractions on epileptiform activity and on neuronal loss was dose-dependent. The severity of the epileptiform activity in the ipsilateral hippocampus correlated with the severity of the neuronal loss. The electrographic, behavioral, and histological changes induced by b, C, and K fractions were similar to those obtained with other drugs that are commonly used to induce convulsion. The convulsant effects of the crude venom may be caused by the fractions studied in this work.


Subject(s)
Male , Rats , Mice , Behavior, Animal/drug effects , Electroencephalography , Hippocampus/drug effects , Seizures/chemically induced , Scorpion Venoms/toxicity , Seizures/chemically induced , Case-Control Studies , Rats, Wistar , Analysis of Variance , Dose-Response Relationship, Drug , Scorpion Venoms/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL