Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Asian Pacific Journal of Tropical Biomedicine ; (12): 285-291, 2018.
Article in Chinese | WPRIM | ID: wpr-950427

ABSTRACT

Objective: To determine the anti-cancer properties of black chokeberry extract on the SK- Hep1 human liver cancer cell line. Methods: MTT cell proliferation assay, wound migration, invasion, zymography and cell cycle were determined after black chokeberry fruit extract treatment. We also measured MMP-2/-9 and MT-1 MMP expression with protein and gene expression levels. Results: We detected four anthocyanins and three phenolic compounds in the black chokeberry by HPLC analysis. Cancer cell growth was inhibited in proportion to the concentration of black chokeberry extracts. In the adhesion test, 100 and 200 μg/mL of black chokeberry extracts decreased the adhesion rate of cancer cells to 87.6% and 75.3%, respectively, when the control group was 100.0%. The 200 μg/mL of black chokeberry extract reduced the MMP-2 and MMP-9 expressions up to 96.8%and 11.3%, respectively. Conclusions: Based on our results, in the SK-Hep1 liver cancer cells, the black chokeberry extract inhibits cancer cell proliferation, adhesion, and migration, ultimately inhibiting cancer metastasis.

2.
Asian Pacific Journal of Tropical Biomedicine ; (12): 586-592, 2018.
Article in Chinese | WPRIM | ID: wpr-950397

ABSTRACT

Objective: To determine the anti-cancer effect of aronia leaf extract on SK-Hep1 cells using migration, metallo metrix proteinase-2/-9 (MMP-2/-9) and MT-1 MMP expression and to evaluate the anti-inflammatory activities of the leaf extract. Methods: The effect of aronia leaf extract on cancer prevention was investigated. SK-Hep1 human liver cancer cell line was treated with aronia leaf extract at various concentractions. MTT assay was used to measure cancer cell growth inhibition, and wound migration assay was used for metastasis determination. The expression of MMP-2/-9 was measured at the protein level using zymography and the expression of MMP-2/-9 and MT-1 MMP was examined at the gene level by RT-PCR. Raw 264.7 macrophage cells were stimulated with lipopolysaccharides to induce inflammation, and then the inhibition of inflammation was evaluated by treatment of aronia leaf extract. Expressions of interleukin-6, tumor factor-α, and nitric oxide (NO) were also determined. Results: SK-Hep1 cell growth was inhibited in proportion to the concentration of aronia leaf extract. In migration assay, aronia leaf extract showed 61.3%-96.3% wound size inhibtion after treating 50-200 μg/mL of aronia leaf extract for 24 h. At the protein level, the expression of MMP-2 and MMP-9 decreased as the concentration of aronia leaf extract treated with SK-Hep1 cells increased. In addition, the same pattern as in the protein was also observed in the mRNA levels. The expressions of MMP-2 and MMP-9 protein were inhibited by 92.2% and 53.8%, respectively after treatment with 200 μg/mL aronia leaf extract. In addition, Raw 264.7 cells treated with aronia leaf extract did not affect cell survival. There was dose dependent inhibition of interleukine-6, tumor necrosis factor-α and nitric oxide after treating aronia leaf extract in lipopolysaccharides-treated Raw 264.7 cell. Conclusions: The results show that aronia leaf has anticancer and and antimetastatic properties in SK-Hep1 and Raw 264.7 cells.

SELECTION OF CITATIONS
SEARCH DETAIL