Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add filters








Language
Year range
1.
Biomolecules & Therapeutics ; : 446-457, 2018.
Article in English | WPRIM | ID: wpr-716597

ABSTRACT

Adiponectin, a hormone predominantly originated from adipose tissue, has exhibited potent anti-inflammatory properties. Accumulating evidence suggests that autophagy induction plays a crucial role in anti-inflammatory responses by adiponectin. However, underlying molecular mechanisms are still largely unknown. Association of Bcl-2 with Beclin-1, an autophagy activating protein, prevents autophagy induction. We have previously shown that adiponectin-induced autophagy activation is mediated through inhibition of interaction between Bcl-2 and Beclin-1. In the present study, we examined the molecular mechanisms by which adiponectin modulates association of Bcl-2 and Beclin-1 in macrophages. Herein, we demonstrated that globular adiponectin (gAcrp) induced increase in the expression of AUF1 and ZFP36L1, which act as mRNA destabilizing proteins, both in RAW 264.7 macrophages and primary peritoneal macrophages. In addition, gene silencing of AUF1 and ZFP36L1 caused restoration of decrease in Bcl-2 expression and Bcl-2 mRNA half-life by gAcrp, indicating crucial roles of AUF1 and ZFP36L1 induction in Bcl-2 mRNA destabilization by gAcrp. Moreover, knock-down of AUF1 and ZFP36L1 enhanced interaction of Bcl-2 with Beclin-1, and subsequently prevented gAcrp-induced autophagy activation, suggesting that AUF1 and ZFP36L1 induction mediates gAcrp-induced autophagy activation via Bcl-2 mRNA destabilization. Furthermore, suppressive effects of gAcrp on LPS-stimulated inflammatory mediators expression were prevented by gene silencing of AUF1 and ZFP36L1 in macrophages. Taken together, these results suggest that AUF1 and ZFP36L1 induction critically contributes to autophagy induction by gAcrp and are promising targets for anti-inflammatory responses by gAcrp.


Subject(s)
Adiponectin , Adipose Tissue , Autophagy , Gene Silencing , Half-Life , Inflammation , Macrophages , Macrophages, Peritoneal , RNA, Messenger
2.
Biomolecules & Therapeutics ; : 191-200, 2018.
Article in English | WPRIM | ID: wpr-713576

ABSTRACT

Chalcone, (2E)-1,3-Diphenylprop-2-en-1-one, and its synthetic derivatives are known to possess anti-oxidative and anti-inflammatory properties. In the present study, we prepared a novel synthetic chalcone compound, (E)-1-(4-hydroxyphenyl)-3-(2-(trifluoromethoxy)phenyl)prop-2-en-1-one name (YJI-7), and investigated its inhibitory effects on endotoxin-stimulated production of reactive oxygen species (ROS) and expression of inflammatory mediators in macrophages. We demonstrated that treatment of RAW 264.7 macrophages with YJI-7 significantly suppressed lipopolysaccharide (LPS)-stimulated ROS production. We also found that YJI-7 substantially decreased NADPH oxidase activity stimulated by LPS, indicating that YJI-7 regulates ROS production via modulation of NADPH oxidase in macrophages. Furthermore, YJI-7 strongly inhibited the expression of a number of inflammatory mediators in a gene-selective manner, suggesting that YJI-7 possesses potent anti-inflammatory properties, as well as anti-oxidative activity. In continuing experiments to investigate the mechanisms that could underlie such biological effects, we revealed that YJI-7 suppressed phosphorylation of p38MAPK and JNK stimulated by LPS, whereas no significant effect on ERK was observed. Furthermore, LPS-stimulated production of ROS, activation of NADPH oxidase and expression of inflammatory mediators were markedly suppressed by treatment with selective inhibitor of p38MAPK (SB203580) and JNK (SP600125). Taken together, these results demonstrated that YJI-7, a novel synthetic chalcone derivative, suppressed LPS-stimulated ROS production via modulation of NADPH oxidase and diminished expression of inflammatory mediators, at least in part, via down-regulation of p38MAPK and JNK signaling in macrophages.


Subject(s)
Chalcone , Down-Regulation , Macrophages , NADPH Oxidases , Phosphorylation , Reactive Oxygen Species
3.
The Korean Journal of Physiology and Pharmacology ; : 487-498, 2016.
Article in English | WPRIM | ID: wpr-728682

ABSTRACT

Leptin, an adipokine predominantly produced from adipose tissue, is well known to induce tumor growth. However, underlying molecular mechanisms are not established yet. While p53 has long been well recognized as a potent tumor suppressor gene, accumulating evidence has also indicated its potential role in growth and survival of cancer cells depending on experimental environments. In the present study, we examined if p53 signaling is implicated in leptin-induced growth of cancer cells. Herein, we demonstrated that leptin treatment significantly increased p53 protein expression in both hepatic (HepG2) and breast (MCF-7) cancer cells without significant effect on mRNA expression. Enhanced p53 expression by leptin was mediated via modulation of ubiquitination, in particular ubiquitin specific protease 2 (USP2)-dependent manner. Furthermore, gene silencing of p53 by small interfering RNA (siRNA) suppressed leptin-induced growth of hepatic and breast cancer cells, indicating the role of p53 signaling in tumor growth by leptin. In addition, we also showed that knockdown of p53 restored suppression of caspase-3 activity by leptin through modulating Bax expression and prevented leptin-induced cell cycle progression, implying the involvement of p53 signaling in the regulation of both apoptosis and cell cycle progression in cancer cells treated with leptin. Taken together, the results in the present study demonstrated the potential role of p53 signaling in leptin-induced tumor growth.


Subject(s)
Adipokines , Adipose Tissue , Apoptosis , Breast Neoplasms , Breast , Caspase 3 , Cell Cycle , Gene Silencing , Genes, Tumor Suppressor , Leptin , RNA, Messenger , RNA, Small Interfering , Ubiquitin , Ubiquitination
4.
Biomolecules & Therapeutics ; : 119-127, 2015.
Article in English | WPRIM | ID: wpr-104384

ABSTRACT

Chalcones (1,3-diaryl-2-propen-1-ones), a subfamily of flavonoid, are widely known to possess potent anti-inflammatory and anti-oxidant properties. In this study, we investigated the effect of 3-(4-Hydroxyphenyl)-1-(thio3-(4-Hydroxyphenyl phen-2-yl)prop-2-en-1-one (TI-I-175), a synthetic chalcone derivative, on endotoxin-induced expression of monocyte chemoattractant protein-1 (MCP-1), one of the key chemokines that regulates migration and infiltration of immune cells, and its potential mechanisms. TI-I-175 potently inhibited MCP-1 mRNA expression stimulated by lipopolysaccharide (LPS) in RAW 264.7 macrophages without significant effect on cell viability. Treatment of cells with TI-I-175 markedly prevented LPS-induced transcriptional activation of activator protein-1 (AP-1) as measured by luciferase reporter assay, while nuclear factor-kappaB (NF-kappaB) activity was not inhibited by TI-I-175, implying that TI-I-175 suppressed MCP-1 expression probably via regulation of AP-1. In addition, TI-I-175 treatment significantly inhibited LPS-induced Akt phosphorylation and led to a significant decrease in reactive oxygen species (ROS) production by LPS, which act as up-stream signaling events required for AP-1 activation in RAW 264.7 macrophages. Taken together, these results indicate that TI-I-175 suppresses MCP-1 gene expression in LPS-stimulated RAW 264.7 macrophages via suppression of ROS production and Akt activation.


Subject(s)
Cell Survival , Chalcone , Chalcones , Chemokine CCL2 , Chemokines , Gene Expression , Inflammation , Luciferases , Macrophages , Phosphorylation , Reactive Oxygen Species , RNA, Messenger , Transcription Factor AP-1 , Transcriptional Activation
5.
Biomolecules & Therapeutics ; : 201-206, 2015.
Article in English | WPRIM | ID: wpr-55787

ABSTRACT

Scutellaria baicalensis is one of the most widely used herbal medicines in East Asia. Because baicalein and baicalin are major components of this herb, it is important to understand the effects of these compounds on drug metabolizing enzymes, such as cytochrome P450 (CYP), for evaluating herb-drug interaction. The effects of baicalin and baicalein on activities of ethoxyresorufin O-deethylase (EROD), methoxyresorufin O-demethylase (MROD), benzyloxyresorufin O-debenzylase (BROD), p-nitrophenol hydroxylase and erythromycin N-demethylase were assessed in rat liver microsomes in the present study. In addition, the pharmacokinetics of caffeine and its three metabolites (i.e., paraxanthine, theobromine and theophylline) in baicalin-treated rats were compared with untreated control. As results, EROD, MROD and BROD activities were inhibited by both baicalin and baicalein. However, there were no significant differences in the pharmacokinetic parameters of oral caffeine and its three metabolites between control and baicalin-treated rats. When the plasma concentration of baicalin was determined, the maximum concentration of baicalin was below the estimated IC50 values observed in vitro. In conclusion, baicalin had no effects on the pharmacokinetics of caffeine and its metabolites in vivo, following single oral administration in rats.


Subject(s)
Animals , Rats , Administration, Oral , Caffeine , Cytochrome P-450 CYP1A1 , Cytochrome P-450 CYP2B1 , Cytochrome P-450 CYP3A , Cytochrome P-450 Enzyme System , Drug Interactions , Asia, Eastern , Herb-Drug Interactions , Inhibitory Concentration 50 , Microsomes, Liver , Pharmacokinetics , Plasma , Scutellaria baicalensis , Theobromine
6.
Biomolecules & Therapeutics ; : 384-389, 2014.
Article in English | WPRIM | ID: wpr-145969

ABSTRACT

Adiponectin, an adipokine predominantly secreted from adipose tissue, exhibits diverse biological responses, including metabolism of glucose and lipid, and apoptosis in cancer cells. Recently, adiponectin has been shown to modulate autophagy as well. While emerging evidence has demonstrated that autophagy plays a role in the modulation of proliferation and apoptosis of cancer cells, the role of autophagy in apoptosis of cancer cell caused by adiponectin has not been explored. In the present study, we demonstrated that globular adiponectin (gAcrp) induces both apoptosis and autophagy in human hepatoma cell line (HepG2 cells) and breast cancer cells (MCF-7), as evidenced by increase in caspase-3 activity, Bax, microtubule-associated protein light chain 3-II (LC3 II) protein levels, and autophagosome formation. Interestingly, gene silencing of LC3B, an autophagy marker, significantly enhanced gAcrp-induced apoptosis in both HepG2 and MCF-7 cell lines, whereas induction of autophagy by rapamycin, an mTOR inhibitor, significantly prevented gAcrp-induced apoptosis in hepatoma cells HepG2. Furthermore, modulation of autophagy produced similar effects on gAcrp-induced Bax expression in HepG2 cells. These results implicate that induction of autophagy plays a regulatory role in adiponectin-induced apoptosis of cancer cells, and thus inhibition of autophagy would be a novel promising target to enhance the efficiency of cancer cell apoptosis by adiponectin.


Subject(s)
Humans , Adipokines , Adiponectin , Adipose Tissue , Apoptosis , Autophagy , Breast Neoplasms , Carcinoma, Hepatocellular , Caspase 3 , Cell Line , Gene Silencing , Glucose , Hep G2 Cells , MCF-7 Cells , Metabolism , Sirolimus
7.
Biomolecules & Therapeutics ; : 390-399, 2014.
Article in English | WPRIM | ID: wpr-145968

ABSTRACT

Chalcones (1,3-diaryl-2-propen-1-ones), a flavonoid subfamily, are widely known for their anti-inflammatory properties. Propenone moiety in chalcones is known to play an important role in generating biological responses by chalcones. In the present study, we synthesized chalcone derivatives structurally modified in propenone moiety and examined inhibitory effect on nitric oxide (NO) production and its potential mechanisms. Among the chalcone derivatives used for this study, TI-I-174 (3-(2-Hydroxyphenyl)-1-(thiophen-3-yl)prop-2-en-1-one) most potently inhibited lipopolysaccharide (LPS)-stimulated nitrite production in RAW 264.7 macrophages. TI-I-174 treatment also markedly inhibited inducible nitric oxide synthase (iNOS) expression. However, TI-I-174 did not significantly affect production of IL-6, cyclooxygenase-2 (COX-2) and tumor necrosis factor-alpha (TNF-alpha), implying that TI-I-174 inhibits production of inflammatory mediators in a selective manner. Treatment of macrophages with TI-I-174 significantly inhibited transcriptional activity of activator protein-1 (AP-1) as determined by luciferase reporter gene assay, whereas nuclear factor-kappaB (NF-kappaB) activity was not affected by TI-I-1744. In addition, TI-I-174 significantly inhibited activation of c-Jun-N-Terminal kinase (JNK) without affecting ERK1/2 and p38MAPK, indicating that down-regulation of iNOS gene expression by TI-I-174 is mainly attributed by blockade of JNK/AP-1 activation. We also demonstrated that TI-I-174 treatment led to an increase in heme oxygenase-1 (HO-1) expression both at mRNA and protein level. Transfection of siRNA targeting HO-1 reversed TI-I-174-mediated inhibition of nitrite production. Taken together, these results indicate that TI-I-174 suppresses NO production in LPS-stimulated RAW 264.7 macrophages via induction of HO-1 and blockade of AP-1 activation.


Subject(s)
Chalcone , Chalcones , Cyclooxygenase 2 , Down-Regulation , Gene Expression , Genes, Reporter , Heme Oxygenase-1 , Inflammation , Interleukin-6 , Luciferases , Macrophages , Nitric Oxide Synthase Type II , Nitric Oxide , Phosphotransferases , RNA, Messenger , RNA, Small Interfering , Transcription Factor AP-1 , Transfection , Tumor Necrosis Factor-alpha
8.
Biomolecules & Therapeutics ; : 435-441, 2013.
Article in English | WPRIM | ID: wpr-202597

ABSTRACT

Emodin, a naturally occurring anthraquinone derivative isolated from Polygoni cuspidati radix, has several beneficial pharmacologic effects, which include anti-cancer, anti-diabetic, and anti-inflammatory activities. In this study, the authors examined the effect of emodin on the production of proinflammatory cytokines, such as, tumor necrosis factor (TNF)-alpha and interleukin (IL)-6, in mouse bone marrow-derived mast cells (BMMCs) stimulated with phorbol 12-myristate 13-acetate (PMA) plus the calcium ionophore A23187. To investigate the mechanism responsible for the regulation of pro-inflammatory cytokine production by emodin, the authors assessed its effects on the activations of transcriptional factor nuclear factor-kappaB (NF-kappaB) and mitogen-activated protein kinases (MAPKs). Emodin attenuated the nuclear translocation of (NF)-kappaB p65 and its DNA-binding activity by reducing the phosphorylation and degradation of IkappaBalpha and the phosphorylation of IkappaB kinase B (IKK). Furthermore, emodin dose-dependently attenuated the phosphorylations of MAPKs, such as, extracellular signal-regulated kinase 1/2 (ERK1/2), p38 MAP kinase, and the stress-activated protein kinases (SAPK)/c-Jun-N-terminal kinase (JNK). Taken together, the findings of this study suggest that the anti-inflammatory effects of emodin on PMA plus A23187-stimulated BMMCs are mediated via the inhibition of NF-kappaB activation and of the MAPK pathway.


Subject(s)
Animals , Mice , Calcimycin , Calcium , Cytokines , Emodin , I-kappa B Kinase , Interleukin-6 , Interleukins , Mast Cells , Mitogen-Activated Protein Kinases , NF-kappa B , p38 Mitogen-Activated Protein Kinases , Phosphorylation , Phosphotransferases , Protein Kinases , Tumor Necrosis Factor-alpha
SELECTION OF CITATIONS
SEARCH DETAIL