Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
J. venom. anim. toxins incl. trop. dis ; 17(3): 318-324, 2011. ilus, graf
Article in English | LILACS | ID: lil-597231

ABSTRACT

Cell-free antigens (CFAg) derived from Paracoccidioides brasiliensis have typically been used in immunodiffusion reactions for serodiagnosis or therapeutic follow-up of paracoccidioidomycosis patients. Thus, we investigated the usefulness of CFAg obtained from cultures at different ages, to evaluate cellular immunity by the footpad test, in experimental murine paracoccidioidomycosis. Male mice infected with P. brasiliensis 265 strain were challenged in the footpad with CFAg obtained from four- (4d CFAg) or 11-day-old cultures (11d CFAg). The increase in footpad swelling provoked by 4d CFAg and 11d CFAg was similar and showed significant difference in relation to control groups. However, the infiltrate pattern was strikingly different: 4d CFAg induced a predominant mononuclear infiltrate whereas 11d CFAg provoked a predominant polymophonuclear infiltrate. These different inflammatory patterns were associated with distinct electrophoretic characteristics. By comparison with 11d CFAg, 4d CFAg showed more numerous and intense bands, including a strong one of 43 kDa (gp43). These results suggest that CFAg derived from Pb 265 isolate can be used as a reagent to evaluate cellular immunity; however, the culture's age is critical because only young cultures are able to induce a typical mononuclear infiltrate. The efficacy of this new paracoccidioidin to assay the cellular immunity in infections caused by other P. brasiliensis isolates is under investigation.


Subject(s)
Animals , Male , Mice , Hypersensitivity, Delayed , Paracoccidioides , Paracoccidioidomycosis
2.
Mem. Inst. Oswaldo Cruz ; 98(8): 1083-1087, Dec. 2003. graf
Article in English | LILACS | ID: lil-355752

ABSTRACT

Beta-glucan, one of the major cell wall components of Saccharomyces cerevisiae, has been found to enhance immune functions. This study investigated in vivo and in vitro effects of beta-glucan on lymphoproliferation and interferon-gamma (IFN-gamma) production by splenic cells from C57BL/6 female mice. All experiments were performed with particulate beta-glucan derived from S. cerevisiae. Data demonstrated that both, i.p administration of particulate beta-glucan (20 or 100 µg/animal) and in vitro stimulation of splenic cells (20 or 100 µg/ml of culture) decreased lymphoproliferation and IFN-gamma production induced by concanavalin A. These results suggest that beta-glucan can trigger a down-modulatory effect regulating a deleterious immune system hyperactivity in the presence of a strong stimulus.


Subject(s)
Animals , Female , Mice , Adjuvants, Immunologic , Glucans , Interferon-gamma , Lymphocyte Activation , Saccharomyces cerevisiae , Spleen , Concanavalin A , Glucans , Interferon-gamma , Lymphocyte Activation , Mice, Inbred C57BL , Spleen
3.
J. venom. anim. toxins ; 6(2): 205-19, 2000. graf
Article in English | LILACS | ID: lil-276609

ABSTRACT

Propolis has been the subject of several recent studies, with the aim of elucidating its biological and pharmacological properties. Propolis has a well-known antimicrobial activity as well as antioxidant, antitumoral, antiinflammatory, and regenerative properties, but literature about its effects on the immunes response in scarce. The goal of this work was to evaluate the propolis effect on macrophage activation by oxygen (H2O2) and nitrogen (NO) metabolite determination. Propolis was produced by africanized honeybees and hydroalcoholic solutions were prepared at different concentrations. Peritoneal macrophages were obtained from male BALB/c mice and culture cells were stimulated in vitro with propolis or interferon-gamma (IFN-gamma). In the in vivo assay, the animals were sacrificed after propolis treatment and cells were stimulated with IFN-gamma. We also investigated the co-stimulant action of propolis associated with IFN-gamma on macrophages. The results show that propolis induces a discreet elevation in H2O2 release and a mild inhibition of NO generation, depending on concentration. Propolis had no co-stimulant activity, diminishing IFN-gamma action on H2O2 and NO production. Data suggest that propolis acts on host non-specific immunity by macrophage activation.


Subject(s)
Animals , Male , Rats , Macrophage Activation , Nitrogen/metabolism , Oxygen/metabolism , Hydrogen Peroxide/metabolism , Propolis/pharmacology , Bees , Interferon-gamma/metabolism , Macrophages, Peritoneal
SELECTION OF CITATIONS
SEARCH DETAIL