Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Braz. j. med. biol. res ; 56: e12854, 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1520474

ABSTRACT

During the tumorigenic process, cancer cells may become overly dependent on the activity of backup cellular pathways for their survival, representing vulnerabilities that could be exploited as therapeutic targets. Certain molecular vulnerabilities manifest as a synthetic lethality relationship, and the identification and characterization of new synthetic lethal interactions may pave the way for the development of new therapeutic approaches for human cancer. Our goal was to investigate a possible synthetic lethal interaction between a member of the Chromodomain Helicase DNA binding proteins family (CHD4) and a member of the histone methyltransferases family (SETDB1) in the molecular context of a cell line (Hs578T) representing the triple negative breast cancer (TNBC), a subtype of breast cancer lacking validated molecular targets for treatment. Therefore, we employed the CRISPR-Cas9 gene editing tool to individually or simultaneously introduce indels in the genomic loci corresponding to the catalytic domains of SETDB1 and CHD4 in the Hs578T cell line. Our main findings included: a) introduction of indels in exon 22 of SETDB1 sensitized Hs578T to the action of the genotoxic chemotherapy doxorubicin; b) by sequentially introducing indels in exon 22 of SETDB1 and exon 23 of CHD4 and tracking the percentage of the remaining wild-type sequences in the mixed cell populations generated, we obtained evidence of the existence of a synthetic lethality interaction between these genes. Considering the lack of molecular targets in TNBC, our findings provided valuable insights for development of new therapeutic approaches not only for TNBC but also for other cancer types.

2.
Braz. j. med. biol. res ; 56: e12611, 2023. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1513883

ABSTRACT

Islet transplantation represents a therapeutic option for type 1 diabetes (T1D). Long-term viability of transplanted islets requires improvement. Mesenchymal stromal cells (MSCs) have been proposed as adjuvants for islet transplantation facilitating grafting and functionality. Stem cell aggregation provides physiological interactions between cells and enhances the in situ concentration of modulators of inflammation and immunity. We established a hanging-drop culture of adult human skin fibroblast-like cells as spheroids, and skin spheroid-derived cells (SphCs) were characterized. We assessed the potential of SphCs in improving islet functionality by cotransplantation with a marginal mass of allogeneic islets in an experimental diabetic mouse model and characterized the secretome of SphCs by mass spectrometry-based proteomics. SphCs were characterized as multipotent progenitors and their coculture with anti-CD3 stimulated mouse splenocytes decreased CD4+ T cell proliferation with skewed cytokine secretion through an increase in the Th2/Th1 ratio profile. SphCs-conditioned media attenuated apoptosis of islets induced by cytokine challenge in vitro and importantly, intratesticular SphCs administration did not show tumorigenicity in immune-deficient mice. Moreover, SphCs improved glycemic control when cotransplanted with a marginal mass of allogeneic islets in a diabetic mouse model without pharmacological immunosuppression. SphCs' protein secretome differed from its paired skin fibroblast-like counterpart in containing 70% of up- and downregulated proteins and biological processes that overall positively influenced islets such as cytoprotection, cellular stress, metabolism, and survival. In summary, SphCs improved the performance of transplanted allogeneic islets in an experimental T1D model, without pharmacological immunosuppression. Future research is warranted to identify SphCs-secreted factors responsible for islets' endurance.

3.
Braz. j. med. biol. res ; 52(9): e8935, 2019. graf
Article in English | LILACS | ID: biblio-1019568

ABSTRACT

The scientific publication landscape is changing quickly, with an enormous increase in options and models. Articles can be published in a complex variety of journals that differ in their presentation format (online-only or in-print), editorial organizations that maintain them (commercial and/or society-based), editorial handling (academic or professional editors), editorial board composition (academic or professional), payment options to cover editorial costs (open access or pay-to-read), indexation, visibility, branding, and other aspects. Additionally, online submissions of non-revised versions of manuscripts prior to seeking publication in a peer-reviewed journal (a practice known as pre-printing) are a growing trend in biological sciences. In this changing landscape, researchers in biochemistry and molecular biology must re-think their priorities in terms of scientific output dissemination. The evaluation processes and institutional funding for scientific publications should also be revised accordingly. This article presents the results of discussions within the Department of Biochemistry, University of São Paulo, on this subject.


Subject(s)
Humans , Periodicals as Topic/statistics & numerical data , Publishing/trends , Research , Biochemistry , Molecular Biology , Periodicals as Topic/standards , Periodicals as Topic/trends , Brazil
4.
Braz. j. med. biol. res ; 46(2): 121-127, 01/fev. 2013. graf
Article in English | LILACS | ID: lil-668771

ABSTRACT

The type I herpes simplex virus VP22 tegument protein is abundant and well known for its ability to translocate proteins from one cell to the other. In spite of some reports questioning its ability to translocate proteins by attributing the results observed to fixation artifacts or simple attachment to the cell membrane, VP22 has been used to deliver several proteins into different cell types, triggering the expected cell response. However, the question of the ability of VP22 to enter stem cells has not been addressed. We investigated whether VP22 could be used as a tool to be applied in stem cell research and differentiation due to its capacity to internalize other proteins without altering the cell genome. We generated a VP22.eGFP construct to evaluate whether VP22 could be internalized and carry another protein with it into two different types of stem cells, namely adult human dental pulp stem cells and mouse embryonic stem cells. We generated a VP22.eGFP fusion protein and demonstrated that, in fact, it enters stem cells. Therefore, this system may be used as a tool to deliver various proteins into stem cells, allowing stem cell research, differentiation and the generation of induced pluripotent stem cells in the absence of genome alterations.


Subject(s)
Animals , Humans , Mice , Carrier Proteins/pharmacokinetics , Cell Membrane/metabolism , Embryonic Stem Cells/metabolism , Green Fluorescent Proteins/pharmacokinetics , Viral Structural Proteins/pharmacokinetics , Blotting, Western , Dental Pulp/cytology , Flow Cytometry , Green Fluorescent Proteins/genetics , Microscopy, Confocal , Reverse Transcriptase Polymerase Chain Reaction , Viral Structural Proteins/genetics
5.
Arq. neuropsiquiatr ; 66(2a): 238-241, jun. 2008. ilus
Article in English | LILACS | ID: lil-484133

ABSTRACT

Malignant brain tumor experimental models tend to employ cells that are immunologically compatible with the receptor animal. In this study, we have proposed an experimental model of encephalic tumor development by injecting C6 cells into athymic Rowett rats, aiming at reaching a model which more closely resembles to the human glioma tumor. In our model, we observed micro-infiltration of tumor cell clusters in the vicinity of the main tumor mass, and of more distal isolated tumor cells immersed in normal encephalic parenchyma. This degree of infiltration is superior to that usually observed in other C6 models.


Modelos experimentais de tumores cerebrais malignos geralmente utilizam células imunologicamente compatíveis com o animal receptor. Neste estudo apresentamos um modelo experimental baseado na inoculação de células C6 em ratos atímicos Rowett, visando obter um tumor que se assemelhe mais àqueles observados nos seres humanos. Neste modelo observamos microinfiltração de ilhotas de células na periferia da massa tumoral principal e nas áreas mais distantes, células tumorais isoladas no tecido cerebral normal. Este grau de infiltração é superior àquele observado em outros modelos utilizando as células C6.


Subject(s)
Animals , Female , Rats , Brain Neoplasms/pathology , Glioma/pathology , Disease Models, Animal , Neoplasm Invasiveness , Rats, Nude
6.
Genet. mol. res. (Online) ; 7(2): 371-378, 2008. tab, ilus
Article in English | LILACS | ID: lil-641002

ABSTRACT

Diffuse infiltrating gliomas are the most common tumors of the central nervous system. Gliomas are classified by the WHO according to their histopathological and clinical characteristics into four classes: grade I (pilocytic astrocytoma), grade II (diffuse astrocytoma), grade III (anaplastic astrocytoma), and grade IV (glioblastoma multiforme). Several genes have already been correlated with astrocytomas, but many others are yet to be uncovered. By analyzing the public SAGE data from 21 patients, comprising low malignant grade astrocytomas and glioblastomas, we found COL6A1 to be differentially expressed, confirming this finding by real time RT-PCR in 66 surgical samples. To the best of our knowledge, COL6A1 has never been described in gliomas. The expression of this gene has significantly different means when normal glia is compared with low-grade astrocytomas (grades I and II) and high-grade astrocytomas (grades III and IV), with a tendency to be greater in higher grade samples, thus rendering it a powerful tumor marker.


Subject(s)
Humans , Astrocytoma/genetics , Collagen Type VI/genetics , Gene Expression Profiling , Astrocytoma/pathology , Gene Expression Regulation, Neoplastic , Reverse Transcriptase Polymerase Chain Reaction , RNA, Neoplasm
7.
Braz. j. med. biol. res ; 38(11): 1571-1574, Nov. 2005. ilus
Article in English | LILACS | ID: lil-414710

ABSTRACT

Large-scale genome projects have generated a rapidly increasing number of DNA sequences. Therefore, development of computational methods to rapidly analyze these sequences is essential for progress in genomic research. Here we present an automatic annotation system for preliminary analysis of DNA sequences. The gene annotation tool (GATO) is a Bioinformatics pipeline designed to facilitate routine functional annotation and easy access to annotated genes. It was designed in view of the frequent need of genomic researchers to access data pertaining to a common set of genes. In the GATO system, annotation is generated by querying some of the Web-accessible resources and the information is stored in a local database, which keeps a record of all previous annotation results. GATO may be accessed from everywhere through the internet or may be run locally if a large number of sequences are going to be annotated. It is implemented in PHP and Perl and may be run on any suitable Web server. Usually, installation and application of annotation systems require experience and are time consuming, but GATO is simple and practical, allowing anyone with basic skills in informatics to access it without any special training. GATO can be downloaded at [http://mariwork.iq.usp.br/gato/]. Minimum computer free space required is 2 MB.


Subject(s)
Humans , Sequence Analysis, DNA/methods , Computational Biology/instrumentation , Biomedical Research/instrumentation , Database Management Systems/instrumentation , Sequence Analysis, DNA/instrumentation , Databases, Genetic , Laboratories , Sequence Tagged Sites , User-Computer Interface
8.
Braz. j. med. biol. res ; 38(10): 1463-1473, Oct. 2005. ilus
Article in English | LILACS | ID: lil-409280

ABSTRACT

Bone morphogenetic proteins (BMPs) are multi-functional growth factors belonging to the transforming growth factor ß superfamily. Family members are expressed during limb development, endochondral ossification, early fracture, and cartilage repair. The activity of BMPs was first identified in the 1960s but the proteins responsible for bone induction were unknown until the purification and cloning of human BMPs in the 1980s. To date, about 15 BMP family members have been identified and characterized. The signal triggered by BMPs is transduced through serine/threonine kinase receptors, type I and II subtypes. Three type I receptors have been shown to bind BMP ligands, namely: type IA and IB BMP receptors and type IA activin receptors. BMPs seem to be involved in the regulation of cell proliferation, survival, differentiation and apoptosis, but their hallmark is their ability to induce bone, cartilage, ligament, and tendon formation at both heterotopic and orthotopic sites. This suggests that, in the future, they may play a major role in the treatment of bone diseases. Several animal studies have illustrated the potential of BMPs to enhance spinal fusion, repair critical-size defects, accelerate union, and heal articular cartilage lesions. Difficulties in producing and purifying BMPs from bone tissue have prompted the attempts made by several laboratories, including ours, to express these proteins in the recombinant form in heterologous systems. This review focuses on BMP structure, molecular mechanisms of action and significance and potential applications in medical, dental and veterinary practice for the treatment of cartilage and bone-related diseases.


Subject(s)
Animals , Humans , Bone Morphogenetic Proteins/physiology , Protein Conformation , Bone Diseases/therapy , Bone Morphogenetic Proteins/chemistry , Bone Morphogenetic Proteins/therapeutic use , Clinical Trials as Topic , Cartilage Diseases/therapy , Meta-Analysis as Topic , Signal Transduction/genetics , Signal Transduction/physiology
9.
Braz. j. med. biol. res ; 34(6): 691-7, Jun. 2001. ilus
Article in English | LILACS | ID: lil-285841

ABSTRACT

In the 70's, pancreatic islet transplantation arose as an attractive alternative to restore normoglycemia; however, the scarcity of donors and difficulties with allotransplants, even under immunosuppressive treatment, greatly hampered the use of this alternative. Several materials and devices have been developed to circumvent the problem of islet rejection by the recipient, but, so far, none has proved to be totally effective. A major barrier to transpose is the highly organized islet architecture and its physical and chemical setting in the pancreatic parenchyma. In order to tackle this problem, we assembled a multidisciplinary team that has been working towards setting up the Human Pancreatic Islets Unit at the Chemistry Institute of the University of São Paulo, to collect and process pancreas from human donors, upon consent, in order to produce purified, viable and functional islets to be used in transplants. Collaboration with the private enterprise has allowed access to the latest developed biomaterials for islet encapsulation and immunoisolation. Reasoning that the natural islet microenvironment should be mimicked for optimum viability and function, we set out to isolate extracellular matrix components from human pancreas, not only for analytical purposes, but also to be used as supplementary components of encapsulating materials. A protocol was designed to routinely culture different pancreatic tissues (islets, parenchyma and ducts) in the presence of several pancreatic extracellular matrix components and peptide growth factors to enrich the beta cell population in vitro before transplantation into patients. In addition to representing a therapeutic promise, this initiative is an example of productive partnership between the medical and scientific sectors of the university and private enterprises.


Subject(s)
Humans , Biomedical Engineering/methods , Diabetes Mellitus/surgery , Islets of Langerhans Transplantation/methods , Islets of Langerhans/physiology , Biocompatible Materials , Capsules , Culture Techniques/methods , Diabetes Mellitus, Type 1/surgery , Extracellular Matrix , Graft Survival , Islets of Langerhans/immunology
10.
Braz. j. med. biol. res ; 32(7): 861-5, July 1999.
Article in English | LILACS | ID: lil-234892

ABSTRACT

Polyomavirus is a DNA tumor virus that induces a variety of tumors in mice. Its genome encodes three proteins, namely large T (LT), middle T (MT), and small T (ST) antigens, that have been implicated in cell transformation and tumorigenesis. LT is associated with cell immortalization, whereas MT plays an essential role in cell transformation by binding to and activating several cytoplasmic proteins that participate in growth factor-induced mitogenic signal transduction to the nucleus. The use of different MT mutants has led to the identification of MT-binding proteins as well as analysis of their importance during cell transformation. Studying the molecular mechanisms of cell transformation by MT has contributed to a better understanding of cell cycle regulation and growth control


Subject(s)
Humans , Animals , Mice , Antigens, Polyomavirus Transforming/genetics , Cell Transformation, Neoplastic/genetics , Papillomavirus Infections/genetics , Polyomavirus/genetics , Signal Transduction/genetics , Antigens, Polyomavirus Transforming/metabolism , Cell Transformation, Neoplastic/metabolism , Mutation , Papillomavirus Infections/metabolism , Polyomavirus , Signal Transduction , Transcription, Genetic
11.
Braz. j. med. biol. res ; 32(7): 867-75, July 1999.
Article in English | LILACS | ID: lil-234893

ABSTRACT

A large number of DNA sequences corresponding to human and animal transcripts have been filed in data banks, as cDNAs or ESTs (expression sequence tags). However, the actual function of their corresponding gene products is still largely unknown. Several of these genes may play a role in regulation of important biological processes such as cell division, differentiation, malignant transformation and oncogenesis. Elucidation of gene function is based on 2 main approaches, namely, overexpression and expression interference, which respectively mimick or suppress a given phenotype. The currently available tools and experimental approaches to gene functional analysis and the most recent advances in mass cDNA screening by functional analysis are discussed


Subject(s)
Animals , Humans , Antisense Elements (Genetics) , Gene Expression , RNA, Catalytic , Transgenes , DNA, Recombinant
12.
Braz. j. med. biol. res ; 32(7): 877-84, July 1999.
Article in English | LILACS | ID: lil-234894

ABSTRACT

Differentially expressed genes are usually identified by comparing steady-state mRNA concentrations. Several methods have been used for this purpose, including differential hybridization, cDNA subtraction, differential display and, more recently, DNA chips. Subtractive hybridization has significantly improved after the polymerase chain reaction was incorporated into the original method and many new protocols have been established. Recently, the availability of the well-known coding sequences for some organisms has greatly facilitated gene expression analysis using high-density microarrays. Here, we describe some of these modifications and discuss the benefits and drawbacks of the various methods corresponding to the main advances in this field


Subject(s)
Humans , Gene Expression/genetics , Genes/genetics , Oligonucleotide Array Sequence Analysis/methods , Cloning, Molecular , Hybridization, Genetic/genetics , Polymerase Chain Reaction , RNA, Messenger/genetics , RNA, Messenger/isolation & purification
13.
Braz. j. med. biol. res ; 32(7): 891-5, July 1999.
Article in English | LILACS | ID: lil-234896

ABSTRACT

The RECK gene was initially isolated as a transformation suppressor gene encoding a novel membrane-anchored glycoprotein and later found to suppress tumor invasion and metastasis by regulating matrix metalloproteinase-9. Its expression is ubiquitous in normal tissues, but undetectable in many tumor cell lines and in fibroblastic lines transformed by various oncogenes. The RECK gene promoter has been cloned and characterized. One of the elements responsible for the oncogene-mediated downregulation of mouse RECK gene is the Sp1 site, where the Sp1 and Sp3 factors bind. Sp1 transcription factor family is involved in the basal level of promoter activity of many genes, as well as in dynamic regulation of gene expression; in a majority of cases as a positive regulator, or, as exemplified by the oncogene-mediated suppression of RECK gene expression, as a negative transcription regulator. The molecular mechanisms of the downregulation of mouse RECK gene and other tumor suppressor genes are just beginning to be uncovered. Understanding the regulation of these genes may help to develop strategies to restore their expression in tumor cells and, hence, suppress the cells' malignant behavior


Subject(s)
Humans , Genes, Tumor Suppressor , Neoplasm Metastasis/genetics , Sp1 Transcription Factor , Transcription, Genetic , Genes, ras
SELECTION OF CITATIONS
SEARCH DETAIL