Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Chinese Journal of Tissue Engineering Research ; (53): 1611-1617, 2018.
Article in Chinese | WPRIM | ID: wpr-698586

ABSTRACT

BACKGROUND: Three-dimensional (3D) bioprinting technology has a huge potential in the tissue engineering field, which is expected to create simple tissue/organ analogues with good biological histocompatibility and biological functions by using living cells and biomaterials. OBJECTIVE: To analyze the characteristics of 3D bioprinting technology and all kinds of biomaterials, and to explore its application in the preparation of tissues/organs analogues. METHODS: Relevant articles published from 1998 to 2017 were searched in PubMed, Web of Science, MEDLINE, and WanFang databases. The keywords were "3D bioprinting, 3D bioprinting technology, biomaterial, tissue engineering" in English and Chinese, respectively. A total of 88 articles were initially searched and 47 eligible articles were finally reviewed in accordance with the inclusion and exclusion criteria. RESULTS AND CONCLUSION: 3D bioprinting techniques mainly include inkjet technique (thermal inkjet and piezoelectric inkjet), pressure-assisted technique, laser-assisted technique, and stereolithography technique (single-photon-based and two-photon-based). The bio-ink consists of living cells, natural polymers and synthetic polymers. 3D bioprinting has exhibited a huge potential in the manufacture of living cell-containing tissue/organ analogues. Despite the fact that it has been widely studied, currently used 3D bioprinting techniques can only be used to prepare relatively simple structures with simple biological functions. Research on the specific tissue/organ analogues with living cells are still in its infancy.

SELECTION OF CITATIONS
SEARCH DETAIL