Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Chinese Journal of Biotechnology ; (12): 351-360, 2006.
Article in Chinese | WPRIM | ID: wpr-286284

ABSTRACT

Glycosyl fluorides are becoming increasingly important molecules for the study on glycosidases. Firstly, glycosyl fluorides act as substrates for glycosidases hydrolysis. Scecondly, the installation of fluorine elsewhere on the carbohydrate ring modifies the properties of the glycosyl fluoride so that the resultant compounds act as mechanism-based inhibitors to label enzymes in the active site, allowing identification of the catalytic nucleophile. Furthermore, glycosyl fluorides also act as donors for transglycosylation by retaining glycolides. Finally, glycosyl fluorides of the wrong anomeric configuration could be used by retaining glycosidase mutants such as glycosynthases and thioglycosynthases to synthesize carbohydrate with high yields(normally 60% to approximately 90%). Fundamental and applied research in biology, glycobiology and nanobiotechnology would benefit from the possibility of synthesizing tailor-made oligo-/poly-saccharides.


Subject(s)
Animals , Humans , Enzyme Inhibitors , Chemistry , Fluorides , Chemistry , Glucosidases , Metabolism , Glycoside Hydrolases , Metabolism , Glycosides , Chemistry , Glycosyltransferases , Metabolism , Hydrolysis , Substrate Specificity
2.
Chinese Journal of Biotechnology ; (12): 486-491, 2002.
Article in Chinese | WPRIM | ID: wpr-256179

ABSTRACT

Based on the characteristics of metabolism of photosynthetic bacteria and the major kinds of organic compounds produced in wastewater degradation, eleven kinds of organic compounds were chosen for hydrogen photoproduction using Rhodopseudomonas palustris Z strain. The maximal volumetric H2 productivity was obtained using acetate as the sole carbon source and electron donor. The kinetics of cell growth and H2 liberation, and the influences of several major limiting factors on photoevolution of H2 were examined using acetate as carbon source. It was shown that hydrogen production was partially correlated with cell growth. The medium composition of the preculture, the preculture time, and inoculation volume were confirmed to have big effects on hydrogen photoevolution. The time delay of H2 production was evidently shortened using the inoculum of late exponential growth phase or stationary phase using ammonium sulfate as nitrogen source or with the inoculum of middle exponential growth phase using glutamate as the nitrogen source. The identity of temperature and light intensity for H2 evolution and cell growth has significant potential application in the technology of splitting organic acid into H2 by photosynthetic bacteria. The concentrations of acetate and glutamate in the medium affected hydrogen photoevolution and cell growth significantly. The productivity of H2 increased with substrate concentrations when substrate concentrations of sodium acetate and sodium glutamate were lower than 70 mmol/L and 15 mmol/L, respectively. Hydrogen production was inhibited but the cell growth was faster when the concentration of sodium glutamate over 15 mmol/L due to forming free NH4+. The highest rate of hydrogen production was 19.4 mL.L-1.h-1 using 30 mmol/L of sodium acetate as hydrogen donor under the standard conditions, respectively. The optimal conditions for hydrogen production were 35-37 degrees C, 6000-8000 lx and pH 7.3-8.3. The effects of oxygen and inoculation volume on photoproduction of hydrogen were also discussed.


Subject(s)
Acetates , Metabolism , Pharmacology , Cell Division , Radiation Effects , Dose-Response Relationship, Drug , Glutamic Acid , Metabolism , Pharmacology , Hydrogen , Metabolism , Hydrogen-Ion Concentration , Light , Oxygen , Pharmacology , Rhodopseudomonas , Metabolism , Radiation Effects , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL