Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Biomolecules & Therapeutics ; : 583-598, 2023.
Article in English | WPRIM | ID: wpr-999685

ABSTRACT

Dementia is a clinical syndrome characterized by progressive impairment of cognitive and functional abilities. As currently applied treatments for dementia can only delay the progression of dementia and cannot fundamentally cure it, much attention is being paid to reducing its incidence by preventing the associated risk factors. Cardiovascular and metabolic diseases are well-known risk factors for dementia, and many studies have attempted to prevent dementia by treating these risk factors. Growing evidence suggests that sex-based factors may play an important role in the pathogenesis of dementia. Therefore, a deeper understanding of the differences in the effects of drugs based on sex may help improve their effectiveness. In this study, we reviewed sex differences in the impact of therapeutics targeting risk factors for dementia, such as cardiovascular and metabolic diseases, to prevent the incidence and/or progression of dementia.

2.
Biomolecules & Therapeutics ; : 210-218, 2023.
Article in English | WPRIM | ID: wpr-966414

ABSTRACT

Prostate cancer is the fifth leading cause of cancer-related mortality in men, primarily because of treatment resistance, recurrence, and metastasis. In the present study, we investigated the role of paracrine interleukin-8 (IL-8) in the antagonistic expression of IL-8 and androgen receptor (AR), and the contribution of IL-8 to prostate cancer aggressiveness. In hormone-responsive LNCaP cells that do not express IL-8, recombinant IL-8 treatment significantly increased expressions of IL-8, CXC chemokine receptor 2 (CXCR2), matrix metalloproteinase (MMP)-2/9, Snail, and vimentin. IL-8 treatment significantly decreased AR and E-cadherin expression. IL-8-induced gene expression changes were suppressed by navarixin, a CXCR1/2 inhibitor, and gallein, a Gβγ inhibitor. In PC-3 androgen-refractory prostate cancer cells, IL-8 knockdown reduced expressions of CXCR2, MMP-2/9, Snail, and vimentin, and increased AR and E-cadherin expressions at the mRNA and protein levels. Co-culture with MEG-01 human megakaryocytic cells secreting high levels of IL-8 induced gene expression changes in both LNCaP and PC-3 cells, similar to those induced by IL-8 treatment. The altered gene expressions were accompanied by significant activation of transcription factor Snail in LNCaP and PC-3 cells. Treatment with the CXCR blocker navarixin inhibited the invasion of PC-3 cells but not LNCaP cells. However, invasion induced by MEG-01 was inhibited by navarixin in both LNCaP and PC-3 cells. The collective findings demonstrate that IL-8 enhances CXCR2 expression, which antagonistically regulates AR expression. More importantly, through changes in IL-8/CXCR2-regulated gene expression, IL-8 induces antiandrogen therapy resistance and epithelial-mesenchymal transition in prostate cancer.

3.
Biomolecules & Therapeutics ; : 58-73, 2020.
Article | WPRIM | ID: wpr-830913

ABSTRACT

Sleep is an essential physiological process, especially for proper brain function through the formation of new pathways and processing information and cognition. Therefore, when sleep is insufficient, this can result in pathophysiologic conditions. Sleep deficiency is a risk factor for various conditions, including dementia, diabetes, and obesity. Recent studies have shown that there are differences in the prevalence of sleep disorders between genders. Insomnia, the most common type of sleep disorder, has been reported to have a higher incidence in females than in males. However, sex/gender differences in other sleep disorder sub-types are not thoroughly understood. Currently, increasing evidence suggests that gender issues should be considered important when prescribing medicine. Therefore, an investigation of the gender-dependent differences in sleep disorders is required. In this review, we first describe sex/gender differences not only in the prevalence of sleep disorders by category but in the efficacy of sleep medications. In addition, we summarize sex/gender differences in the impact of sleep disorders on incident dementia. This may help understand gender-dependent pathogenesis of sleep disorders and develop therapeutic strategies in men and women.

4.
Biomolecules & Therapeutics ; : 584-590, 2019.
Article in English | WPRIM | ID: wpr-763042

ABSTRACT

Luteolin, a widespread flavonoid, has been known to have neuroprotective activity against various neurologic diseases such as epilepsy, and Alzheimer’s disease. However, little information is available regarding the hypnotic effect of luteolin. In this study, we evaluated the hypnotic effect of luteolin and its underlying mechanism. In pentobarbital-induced sleeping mice model, luteolin (1, and 3 mg/kg, p.o.) decreased sleep latency and increased the total sleep time. Through electroencephalogram (EEG) and electromyogram (EMG) recording, we demonstrated that luteolin increased non-rapid eye movement (NREM) sleep time and decreased wake time. To evaluate the underlying mechanism, we examined the effects of various pharmacological antagonists on the hypnotic effect of luteolin. The hypnotic effect of 3 mg/kg of luteolin was not affected by flumazenil, a GABAA receptor-benzodiazepine (GABAAR-BDZ) binding site antagonist, and bicuculine, a GABAAR-GABA binding site antagonist. On the other hand, the hypnotic effect of 3 mg/kg of luteolin was almost completely blocked by caffeine, an antagonist for both adenosine A1 and A2A receptor (A1R and A2AR), 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX), an A1R antagonist, and SCH-58261, an A2AR antagonist. From the binding affinity assay, we have found that luteolin significantly binds to not only A1R but also A2AR with IC₅₀ of 1.19, 0.84 μg/kg, respectively. However, luteolin did not bind to either BDZ-receptor or GABAAR. From these results, it has been suggested that luteolin has hypnotic efficacy through A1R and A2AR binding.


Subject(s)
Animals , Mice , Adenosine , Binding Sites , Caffeine , Electroencephalography , Epilepsy , Eye Movements , Flumazenil , Hand , Hypnotics and Sedatives , Luteolin , Receptor, Adenosine A1 , Receptor, Adenosine A2A , Sleep Initiation and Maintenance Disorders
5.
Biomolecules & Therapeutics ; : 521-532, 2018.
Article in English | WPRIM | ID: wpr-717962

ABSTRACT

Dementia, characterized by a progressive cognitive decline and a cumulative inability to behave independently, is highly associated with other diseases. Various cardiovascular disorders, such as coronary artery disease and atrial fibrillation, are well-known risk factors for dementia. Currently, increasing evidence suggests that sex factors may play an important role in the pathogenesis of diseases, including cardiovascular disease and dementia. Recent studies show that nearly two-thirds of patients diagnosed with Alzheimer's disease are women; however, the incidence difference between men and women remains vague. Therefore, studies are needed to investigate sex-specific differences, which can help understand the pathophysiology of dementia and identify potential therapeutic targets for both sexes. In the present review, we summarize sex differences in the prevalence and incidence of dementia by subtypes. This review also describes sex differences in the risk factors of dementia and examines the impact of risk factors on the incidence of dementia in both sexes.


Subject(s)
Female , Humans , Male , Alzheimer Disease , Atrial Fibrillation , Cardiovascular Diseases , Coronary Artery Disease , Dementia , Incidence , Prevalence , Risk Factors , Sex Characteristics , Sex Factors
6.
Biomolecules & Therapeutics ; : 368-373, 2018.
Article in English | WPRIM | ID: wpr-715618

ABSTRACT

Rapid eye movement (REM) sleep has an essential role in the process of learning and memory in the hippocampus. It has been reported that linalool, a major component of Lavandula angustifolia, has antioxidant, anti-inflammatory, and neuroprotective effects, along with other effects. However, the effect of linalool on the cognitive impairment and behavioral alterations that are induced by REM-sleep deprivation has not yet been elucidated. Several studies have reported that REM-sleep deprivation-induced memory deficits provide a well-known model of behavioral alterations. In the present study, we examined whether linalool elicited an anti-stress effect, reversing the behavioral alterations observed following REM-sleep deprivation in mice. Furthermore, we investigated the underlying mechanism of the effect of linalool. Spatial memory and learning memory were assessed through Y maze and passive avoidance tests, respectively, and the forced swimming test was used to evaluate anti-stress activity. The mechanisms through which linalool improves memory loss and behavioral alterations in sleep-deprived mice appeared to be through an increase in the serotonin levels. Linalool significantly ameliorated the spatial and learning memory deficits, and stress activity observed in sleep-deprived animals. Moreover, linalool led to serotonin release, and cortisol level reduction. Our findings suggest that linalool has beneficial effects on the memory loss and behavioral alterations induced by REM-sleep deprivation through the regulation of serotonin levels.


Subject(s)
Animals , Mice , Cognition Disorders , Hippocampus , Hydrocortisone , Lavandula , Learning , Memory Disorders , Memory , Neuroprotective Agents , Physical Exertion , Serotonin , Sleep, REM , Spatial Memory
7.
Biomolecules & Therapeutics ; : 308-314, 2017.
Article in English | WPRIM | ID: wpr-160699

ABSTRACT

Urotensin II (UII) is a mitogenic and hypertrophic agent that can induce the proliferation of vascular cells. UII inhibition has been considered as beneficial strategy for atherosclerosis and restenosis. However, currently there is no therapeutics clinically available for atherosclerosis or restenosis. In this study, we evaluated the effects of a newly synthesized UII receptor (UT) antagonist, KR-36996, on the proliferation of SMCs in vitro and neointima formation in vivo in comparison with GSK-1440115, a known potent UT antagonist. In primary human aortic SMCs (HASMCs), UII (50 nM) induced proliferation was significantly inhibited by KR-36996 at 1, 10, and 100 nM which showed greater potency (IC₅₀: 3.5 nM) than GSK-1440115 (IC₅₀: 82.3 nM). UII-induced proliferation of HASMC cells was inhibited by U0126, an ERK1/2 inhibitor, but not by SP600125 (inhibitor of JNK) or SB202190 (inhibitor of p38 MAPK). UII increased the phosphorylation level of ERK1/2. Such increase was significantly inhibited by KR-36996. UII-induced proliferation was also inhibited by trolox, a scavenger for reactive oxygen species (ROS). UII-induced ROS generation was also decreased by KR-36996 treatment. In a carotid artery ligation mouse model, intimal thickening was dramatically suppressed by oral treatment with KR-36996 (30 mg/kg) which showed better efficacy than GSK-1440115. These results suggest that KR-36996 is a better candidate than GSK-1440115 in preventing vascular proliferation in the pathogenesis of atherosclerosis and restenosis.


Subject(s)
Animals , Humans , Mice , Atherosclerosis , Carotid Arteries , In Vitro Techniques , Ligation , Muscle, Smooth , Muscle, Smooth, Vascular , Neointima , Phosphorylation , Reactive Oxygen Species
8.
Biomolecules & Therapeutics ; : 593-598, 2017.
Article in English | WPRIM | ID: wpr-10722

ABSTRACT

The Na⁺/H⁺ exchanger-1 (NHE-1) is a ubiquitously expressed pH-regulatory membrane protein that functions in the brain, heart, and other organs. It is increased by intracellular acidosis through the interaction of intracellular H⁺ with an allosteric modifier site in the transport domain. In the previous study, we reported that glutamate-induced NHE-1 phosphorylation mediated by activation of protein kinase C-β (PKC-β) in cultured neuron cells via extracellular signal-regulated kinases (ERK)/p90 ribosomal s6 kinases (p90RSK) pathway results in NHE-1 activation. However, whether glutamate stimulates NHE-1 activity solely by the allosteric mechanism remains elusive. Cultured primary cortical neuronal cells were subjected to intracellular acidosis by exposure to 100 μM glutamate or 20 mM NH₄Cl. After the desired duration of intracellular acidosis, the phosphorylation and activation of PKC-β, ERK1/2 and p90RSK were determined by Western blotting. We investigated whether the duration of intracellular acidosis is controlled by glutamate exposure time. The NHE-1 activation increased while intracellular acidosis sustained for >3 min. To determine if sustained intracellular acidosis induced NHE-1 phosphorylation, we examined phosphorylation of NHE-1 induced by intracellular acidosis by transient exposure to NH₄Cl. Sustained intracellular acidosis led to activation and phosphorylation of NHE-1. In addition, sustained intracellular acidosis also activated the PKC-β, ERK1/2, and p90RSK in neuronal cells. We conclude that glutamate stimulates NHE-1 activity through sustained intracellular acidosis, which mediates NHE-1 phosphorylation regulated by PKC-β/ERK1/2/p90RSK pathway in neuronal cells.


Subject(s)
Acidosis , Blotting, Western , Brain , Extracellular Signal-Regulated MAP Kinases , Glutamic Acid , Heart , Membrane Proteins , Neurons , Phosphorylation , Phosphotransferases , Protein Kinases
9.
Biomolecules & Therapeutics ; : 523-528, 2016.
Article in English | WPRIM | ID: wpr-201377

ABSTRACT

Urotensin II (UII) is a potent vasoactive peptide and mitogenic agent to induce proliferation of various cells including vascular smooth muscle cells (VSMCs). In this study, we examined the effects of a novel UII receptor (UT) antagonist, KR-36676, on vasoconstriction of aorta and proliferation of aortic SMCs. In rat aorta, UII-induced vasoconstriction was significantly inhibited by KR-36676 in a concentration-dependent manner. In primary human aortic SMCs (hAoSMCs), UII-induced cell proliferation was significantly inhibited by KR-36676 in a concentration-dependent manner. In addition, KR-36676 decreased UII-induced phosphorylation of ERK, and UII-induced cell proliferation was also significantly inhibited by a known ERK inhibitor U0126. In mouse carotid ligation model, intimal thickening of carotid artery was dramatically suppressed by oral treatment with KR-36676 (30 mg/ kg/day) for 4 weeks compared to vehicle-treated group. From these results, it is indicated that KR-36676 suppress UII-induced proliferation of VSMCs at least partially through inhibition of ERK activation, and that it also attenuates UII-induced vasoconstriction and vascular neointima formation. Our study suggest that KR-36676 may be an attractive candidate for the pharmacological management of vascular dysfunction.


Subject(s)
Animals , Humans , Mice , Rats , Aorta , Carotid Arteries , Cell Proliferation , Ligation , Muscle, Smooth , Muscle, Smooth, Vascular , Neointima , Phosphorylation , Vasoconstriction
10.
Biomolecules & Therapeutics ; : 149-155, 2015.
Article in English | WPRIM | ID: wpr-104380

ABSTRACT

Our previous study demonstrated that yuzu has an anti-platelet effect in rat blood. In the present study, we examined whether the anti-platelet effect of yuzu can be extended to human blood by investigating its ability to inhibit aggregations induced by various agonists in human platelet rich plasma (PRP). This study also investigated the underlying mechanism of yuzu focusing on ADP granule secretion, TXB2 formations, and PLCgamma/Akt signaling. The results from this study showed that ethanolic yuzu extract (YE), and its components, hesperidin and naringin, inhibited human platelet aggregation in a concentration-dependent manner. YE, hesperidin and naringin also inhibited TXB2 formation and ADP release. The phosphorylation of PLCgamma and Akt was significantly inhibited by YE, heperidin and naringin. Furthermore, we demonstrated that YE, heperidin and naringin has anti-platelet effects in rat ex vivo studies, and lower side effects in mice tail bleeding time studies. The results from this study suggest that YE, hesperidin and naringin can inhibit human platelet aggregation, at least partly through the inhibition of PLCgamma and Akt, leading to a decrease in TXB2 formation and granule secretion.


Subject(s)
Animals , Humans , Mice , Rats , Adenosine Diphosphate , Bleeding Time , Blood Platelets , Ethanol , Hesperidin , Phosphorylation , Platelet Aggregation , Platelet-Rich Plasma , Tail
11.
Biomolecules & Therapeutics ; : 277-283, 2013.
Article in English | WPRIM | ID: wpr-59932

ABSTRACT

In this study, we investigated the effects of a selective urotensin II (UII) receptor antagonist, SB-657510, on the inflammatory response induced by UII in human umbilical vein endothelial cells (EA.hy926) and human monocytes (U937). UII induced inflammatory activation of endothelial cells through expression of proinflammatory cytokines (IL-1beta and IL-6), adhesion molecules (VCAM-1), and tissue factor (TF), which facilitates the adhesion of monocytes to EA.hy926 cells. Treatment with SB-657510 significantly inhibited UII-induced expression of IL-1beta, IL-6, and VCAM-1 in EA.hy926 cells. Further, SB-657510 dramatically blocked the UII-induced increase in adhesion between U937 and EA.hy926 cells. In addition, SB-657510 remarkably reduced UII-induced expression of TF in EA.hy926 cells. Taken together, our results demonstrate that the UII antagonist SB-657510 decreases the progression of inflammation induced by UII in endothelial cells.


Subject(s)
Humans , Cytokines , Endothelial Cells , Human Umbilical Vein Endothelial Cells , Inflammation , Interleukin-6 , Monocytes , Thromboplastin , Vascular Cell Adhesion Molecule-1
12.
Biomolecules & Therapeutics ; : 358-363, 2013.
Article in English | WPRIM | ID: wpr-108277

ABSTRACT

In the present study, we investigated the effect of intracellular glutathione (GSH) depletion in heart-derived H9c2 cells and its mechanism. L-buthionine-S,R-sulfoximine (BSO) induced the depletion of cellular GSH, and BSO-induced reactive oxygen species (ROS) production was inhibited by glutathione monoethyl ester (GME). Additionally, GME inhibited BSO-induced caspase-3 activation, annexin V-positive cells, and annexin V-negative/propidium iodide (PI)-positive cells. Treatment with rottlerin completely blocked BSO-induced cell death and ROS generation. BSO-induced GSH depletion caused a translocation of PKC-delta from the cytosol to the membrane fraction, which was inhibited by treatment with GME. From these results, it is suggested that BSO-induced depletion of cellular GSH causes an activation of PKC-delta and, subsequently, generation of ROS, thereby inducing H9c2 cell death.


Subject(s)
Apoptosis , Caspase 3 , Cell Death , Cytosol , Glutathione , Membranes , Myocytes, Cardiac , Reactive Oxygen Species
13.
The Korean Journal of Physiology and Pharmacology ; : 447-454, 1999.
Article in English | WPRIM | ID: wpr-727850

ABSTRACT

The production of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS) are known to be modulated by a variety of factors. Recent study showed that endotoxin-induced NO synthesis and iNOS expression were greatly enhanced by elevation of extracellular glucose concentration in murine macrophages. Although this was suggested to be due to the activation of protein kinase C (PKC) via sorbitol pathway, there was lack of evidence for this speculation. This study was performed to delineate the underlying intracellular mechanisms of glucose-enhancing effect on endotoxin-induced NO production in Raw264.7 macrophages. The levels of NO release induced by lipopolysaccharide (LPS) significantly increased by the treatment of glucose in a concentration dependent manner and also, this effect was observed in LPS-preprimed cells. Concurrent incubation of cells with PKC inhibitors, H-7 or chelerythrine, and LPS resulted in the diminution of NO production regardless of glucose conc entration but this was not in the case of LPS-prepriming, that is, chelerythrine showed a minimal effect on the glucose- enhancing effect PMA, a PKC activator, did not show any significant effect on glucose-associated NO production. Modulation of sorbitol pathway with zopolrestat, an aldose reductase inhibitor, did not affect LPS-induced NO production and iNOS expression under high glucose condition. And also, sodium pyruvate, which is expected to normalize cytosolic NADH/NAD+ ratio, did not show any significant effect at concentrations of up to 10 mM. Glucosamine marginally increased the endotoxin-induced nitrite release in both control and high glucose treated group 6-diazo-5-oxonorleucine (L-DON) and azaserine, glutamine: fructose-6-phosphate amidotransferase (GFAT) inhibitors, significantly diminished the augmentation effect of high glucose on endotoxin-induced NO production. On the other hand, negative modulation of GFAT inhibitors was not reversed by the treatment of glucosamine , suggesting the minimal involvement, if any, of glucosamine pathway in glucose-enhancing effect. In summary, these results strongly suggest that the hexosamine biosynthesis pathway and the activation of PKC via sorbitol pathway do not contribute to the augmenting effect of high glucose on endotoxin induced NO production in macrophage-like Raw264.7 cells.


Subject(s)
1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine , Aldehyde Reductase , Azaserine , Cytosol , Glucosamine , Glucose , Glutamine , Hand , Macrophages , Nitric Oxide Synthase Type II , Nitric Oxide , Protein Kinase C , Pyruvic Acid , Sodium , Sorbitol
SELECTION OF CITATIONS
SEARCH DETAIL