Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
China Journal of Chinese Materia Medica ; (24): 3701-3714, 2023.
Article in Chinese | WPRIM | ID: wpr-981502

ABSTRACT

This study aimed to explore the anti-inflammatory material basis and molecular mechanism of Artemisia stolonifera based on the analysis of the chemical components in different extracted fractions of A. stolonifera and their antioxidant and anti-inflammatory effects in combination with network pharmacology and molecular docking. Thirty-two chemical components were identified from A. stolonifera by ultra-performance liquid chromatography coupled to tandem quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS). Among them, there were 7, 21 and 22 compounds in water, n-butanol and ethyl acetate fractions, respectively. The antio-xidant capacity of different extracted fractions was evaluated by measuring their scavenging ability against 1,1-diphenyl-2-picrylhydrazyl radical 2,2-diphenyl-1-(2,4,6-trinitrophenyl) hydrazyl(DPPH) and 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonic acid)(ABTS) free radicals and total antioxidant capacity [ferric reducing antioxidant power(FRAP) assay]. The inflammatory model of RAW264.7 cells was induced by lipopolysaccharide(LPS), and the levels of nitrite oxide(NO), tumor necrosis factor-α(TNF-α), interleukin-6(IL-6) in the supernatant and the mRNA expression of related inflammatory factors in cells were used to evaluate the anti-inflammatory effects. The results revealed that ethyl acetate fraction of A. stolonifera was the optimal antioxidant and anti-inflammatory fraction. By network pharmacology, it was found that flavonoids such as rhamnazin, eupatilin, jaceosidin, luteolin and nepetin could act on key targets such as TNF, serine/threonine protein kinase 1(AKT1), tumor protein p53(TP53), caspase-3(CASP3) and epidermal growth factor receptor(EGFR), and regulate the phosphatidylinositol-3-kinase-protein kinase B(PI3K-AKT) and mitogen-activated protein kinase(MAPK) signaling pathways to exert the anti-inflammatory effects. Molecular docking further indicated excellent binding properties between the above core components and core targets. This study preliminarily clarified the anti-inflammatory material basis and mechanism of ethyl acetate fraction of A. stolonifera, providing a basis for the follow-up clinical application of A. stolonifera and drug development.


Subject(s)
Antioxidants/chemistry , Molecular Docking Simulation , Artemisia , Network Pharmacology , Phosphatidylinositol 3-Kinases , Anti-Inflammatory Agents/chemistry , Drugs, Chinese Herbal/pharmacology , Interleukin-6
2.
Chinese Journal of Oncology ; (12): 331-333, 2011.
Article in Chinese | WPRIM | ID: wpr-303303

ABSTRACT

<p><b>OBJECTIVE</b>To study the effects of lysyl oxidase (LOX) on the migration and adhesion of the human gastric cancer cell line HGC-27 cells in vitro.</p><p><b>METHODS</b>The human gastric cancer cell line HGC-27 cells were cultured in vitro, and treated with different concentration of β-aminopropionitrile (BAPN). The ability of migration was assessed by wound-healing assay. The ability of adhesion was detected by homogenous and heterogeneous adhesion experiments.</p><p><b>RESULTS</b>Compared that with 0 mmol/L BAPN, the ability of migration of the cells after treatment with 0.2 mmol/L BAPN was descended at 8, 24, 32 and 48 h; the number of cells with homogeneous adhesion was increased from (6.97 ± 0.07) × 10(3)/ml to (7.78 ± 0.11) × 10(3)/ml; and the number of cells with heterogeneous adhesion was decreased from (8.98 ± 0.15) × 10(3)/ml to (8.35 ± 0.10) × 10(3)/ml, both < 0.05. Compared with that of cells treated with 0 mmol/L and 0.2 mmol/L BAPN, the migration ability of cells after treatment with 0.3 mmol/L BAPN was descended at 8, 24, 32 and 48 h; the number of cells with homogeneous adhesion was raised to (8.02 ± 0.11) × 10(3)/ml and the number of cells with heterogeneous adhesion was down to (7.93 ± 0.07) × 10(3)/ml (P < 0.05).</p><p><b>CONCLUSION</b>LOX may promote the metastasis of cancer cells by enhancing invasion, increasing heterogeneous adhesion and decreasing homogeneous adhesion.</p>


Subject(s)
Humans , Aminopropionitrile , Pharmacology , Cell Adhesion , Cell Line, Tumor , Cell Movement , Dose-Response Relationship, Drug , Neoplasm Invasiveness , Protein-Lysine 6-Oxidase , Metabolism , Physiology , Stomach Neoplasms , Pathology
SELECTION OF CITATIONS
SEARCH DETAIL