Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Acta cir. bras ; 34(6): e201900609, 2019. tab, graf
Article in English | LILACS | ID: biblio-1019266

ABSTRACT

Abstract Purpose The research is intended for clarification of the efficacy as well as the underlying mechanism of GSK-3β inhibitors on the advancement of acute lung injuries in acute necrotizing pancreatitis (ANP) in rats. Methods Seventy-two rats were randomly divided into 6 groups: (1)ANP-vehicle; (2)ANP-TDZD-8;(3)ANP-SB216763;(4)Sham-vehicle;(5)Sham-TDZD-8;(6)Sham-SB216763; Blood biochemical test, histopathological examination and immunohistochemical analysis of rats pancreas and lung tissues were performed. The protein expression of GSK-3β, phospho-GSK-3β (Ser9), iNOS, ICAM-1, TNF-α, and IL-10 were detected in lung tissues by Western-blot. Results The outcomes revealed that the intervention of GSK-3β inhibitors alleviated the pathological damage of pancreas and lung (P<0.01), reduced serum amylase, lipase, hydrothorax and lung Wet-to-Dry Ratio, attenuated serum concentrations of IL-1β and IL-6 (P<0.01), inhibited the activation of NF-κB, and abated expression of iNOS, ICAM-1 and TNF-α protein, but up-regulated IL-10 expression in lung of ANP rats (P<0.01). The inflammatory response and various indicators in ANP-TDZD-8 groups were lower than those in ANP-SB216763 groups. Conclusions Inhibition of GSK-3β weakens acute lung injury related to ANP via the inhibitory function of NF-κB signaling pathway. Different kinds of GSK-3β inhibitors have different effects to ANP acute lung injury.


Subject(s)
Animals , Male , Rats , Pancreatitis, Acute Necrotizing/complications , Acute Lung Injury/prevention & control , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Phosphorylation , Immunohistochemistry , Signal Transduction , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/metabolism , Rats, Wistar , Pancreatitis, Acute Necrotizing/pathology , Disease Models, Animal , Interleukin-1beta/metabolism , Acute Lung Injury/etiology , Acute Lung Injury/metabolism , Acute Lung Injury/pathology
SELECTION OF CITATIONS
SEARCH DETAIL