Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
Neuroscience Bulletin ; (6): 1703-1716, 2023.
Article in English | WPRIM | ID: wpr-1010631

ABSTRACT

Understanding the fundamental processes of human brain development and diseases is of great importance for our health. However, existing research models such as non-human primate and mouse models remain limited due to their developmental discrepancies compared with humans. Over the past years, an emerging model, the "brain organoid" integrated from human pluripotent stem cells, has been developed to mimic developmental processes of the human brain and disease-associated phenotypes to some extent, making it possible to better understand the complex structures and functions of the human brain. In this review, we summarize recent advances in brain organoid technologies and their applications in brain development and diseases, including neurodevelopmental, neurodegenerative, psychiatric diseases, and brain tumors. Finally, we also discuss current limitations and the potential of brain organoids.


Subject(s)
Animals , Mice , Humans , Induced Pluripotent Stem Cells , Brain/pathology , Disease Models, Animal , Neurodegenerative Diseases/pathology , Organoids/pathology
2.
Acta Physiologica Sinica ; (6): 485-497, 2017.
Article in Chinese | WPRIM | ID: wpr-348248

ABSTRACT

During the evolution from primates to humans, the size of cerebral cortex is increased by forming more gyri and sulci, which is believed to be highly associated with cognitive abilities and the basis of higher brain functions in humans. Accumulating lines of evidence have shown that the cortical size is regulated both by protein-coding genes and non-coding RNAs. In particular, the recently identified outer radial glial cells (oRGs) distributed in the outer subventricular zone (oSVZ) of gyrencephalic brains, have been considered to be important for cortical expansion and folding. This review summarizes recent progresses in the understanding of cortex expansion and discusses the potential molecular and cellular mechanisms of cortical folding.

SELECTION OF CITATIONS
SEARCH DETAIL