Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Electron. j. biotechnol ; Electron. j. biotechnol;26: 40-45, Mar. 2017. ilus, graf
Article in English | LILACS | ID: biblio-1009000

ABSTRACT

Background: Ethylene plays an important role in the regulation of floral organ development in soybean, and 1-aminocyclopropane-1-carboxylate synthase (ACS) is a rate-limiting enzyme for ethylene biosynthesis. However, whether ACS also regulates floral organ differentiation in soybean remains unknown. To address this, we constructed an RNAi vector to inhibit ACS expression in cotyledonary nodes. Linear DNA cassettes of RNAi-ACS obtained by PCR were used to transform soybean cotyledonary nodes. Results: In total, 131 of 139 transiently transformed plants acquired herbicide resistance and displayed GUS activities in the new buds. In comparison to untransformed seedling controls, a greater number of flower buds were differentiated at the cotyledonary node; GM-ACS1 mRNA expression levels and ethylene emission in the transformed buds were reduced. Conclusion: These results indicate that the cotyledonary node transient transformation system may be suitable for stable transformation and that the inhibition of ACS expression may be an effective strategy for promoting floral organ differentiation in soybean.


Subject(s)
Glycine max/enzymology , Glycine max/genetics , RNA Interference , Lyases/metabolism , Glycine max/growth & development , Transformation, Genetic , Gene Expression , Cell Differentiation , Polymerase Chain Reaction , Gene Expression Regulation, Plant , Ethylenes/biosynthesis , Herbicide Resistance , Genetic Vectors , Glucuronidase
SELECTION OF CITATIONS
SEARCH DETAIL